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Summary

Computer simulations of physical processes are being relied on to an increasing degree for
design, performance, reliability, and safety of engineered systems. Computational analyses have
addressed the operation of systems at design conditions, off-design conditions, and accident
scenarios. For example, the safety aspects of products or systems can represent an important,
sometimes dominant, element of numerical simulations. The potential legal and liability costs of
hardware failures can be staggering to a company, the environment, or the public. This
consideration is especially crucial, given that we may be interested in high-consequence systems
that cannot ever be physically tested, including the catastrophic failure of a full-scale containment
building for a nuclear power plant, explosive damage to a high-rise office building, ballistic missile
defense systems, and a nuclear weapon involved in a transportation accident.

Developers of computer codes, analysts who use the codes, and decision makers who rely on
the results of the analyses face a critical question: How should confidence in modeling and
simulation be critically assessed? Verification and validation (V&V) of computational simulations
are the primary methods for building and quantifying this confidence. Briefly, verification is the
assessment of the accuracy of the solution to a computational model. Validation is the assessment
of the accuracy of a computational simulation by comparison with experimental data. In
verification, the relationship of the simulation to the real world is not an issue. In validation, the
relationship between computation and the real world, i.e., experimental data, is the issue.

This paper presents our viewpoint of the state of the art in V&V in computational physics. (In
this paper we refer to all fields of computational engineering and physics, e.g., computational
fluid dynamics, computational solid mechanics, structural dynamics, shock wave physics,
computational chemistry, etc., as computational physics.) We do not provide a comprehensive
review of the multitudinous contributions to V&V, although we do reference a large number of
previous works from many fields. We have attempted to bring together many different perspectives
on V&V, highlight those perspectives that are effective from a practical engineering viewpoint,
suggest future research topics, and discuss key implementation issues that are necessary to
improve the effectiveness of V&V. We describe our view of the framework in which predictive
capability relies on V&V, as well as other factors that affect predictive capability. Our opinions
about the research needs and management issues in V&V are very practical: What methods and
techniques need to be developed and what changes in the views of management need to occur to
increase the usefulness, reliability, and impact of computational physics for decision making about
engineering systems?

We review the state of the art in V&V over a wide range of topics; for example, prioritization
of V&V activities using the Phenomena Identification and Ranking Table (PIRT), code
verification, software quality assurance (SQA), numerical error estimation, hierarchical
experiments for validation, characteristics of validation experiments, the need to perform
nondeterministic computational simulations in comparisons with experimental data, and validation
metrics. We then provide an extensive discussion of V&V research and implementation issues that
we believe must be addressed for V&V to be more effective in improving confidence in
computational predictive capability. Some of the research topics addressed are development of
improved procedures for the use of the PIRT for prioritizing V&V activities, the method of
manufactured solutions for code verification, development and use of hierarchical validation
diagrams, and the construction and use of validation metrics incorporating statistical measures.
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Some of the implementation topics addressed are the needed management initiatives to better align
and team computationalists and experimentalists in conducting validation activities, the perspective
of commercial software companies, the key role of analysts and decision makers as code
customers, obstacles to the improved effectiveness of V&V, effects of cost and schedule
constraints on practical applications in industrial settings, and the role of engineering standards
committees in documenting best practices for V&V.

Our top ten recommendations for needed research, development, and implementation issues
in V&V are the following:

1. The application domain for the modeling and simulation capability should be well
understood and carefully defined, and the accuracy requirements should be known for the
applications of interest.

2. A validation tier hierarchy, including the validation pyramid, should be carefully
constructed using a systems engineering approach.

3. A PIRT should be constructed to identify and rank the importance of physical processes
and interactions of processes for all tiers and faces of the validation pyramid.

4. Code verification activities should be defined and prioritized, schedules set, and needed
resources allocated.

5. SQA procedures should be defined, implemented, consistently adhered to, and
documented.

6. Using the results of the PIRT, model validation activities, both computational and
experimental, should be defined and prioritized, schedules set, and needed resources
allocated.

7. Validation metrics should be carefully defined with requirements stated, and clearly
connected to modeling and simulation requirements for the application domain.

8. Statistical data for both computational and experimental results should be used for the
validation metrics to precisely quantify the accuracy of the model for all validation
experiments.

9. Various fields of computational physics should begin to assemble, construct, and document
V&V databases.

10. Analysts who use codes and decision makers who use results from codes should begin
requiring extensive, well documented V&V activities from code developers.
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1. Introduction

1.1 Background

During the last three or four decades, computer simulations of physical processes have been
used in scientific research and in the analysis and design of engineered systems. The systems of
interest have been existing or proposed systems that operate, for example, at design conditions,
off-design conditions, and failure-mode conditions in accident scenarios. The systems of interest
have also been natural systems, for example, computer simulations for environmental impact, as in
the analysis of surface-water quality and the risk assessment of underground nuclear-waste
repositories. These kinds of predictions are beneficial in the development of public policy, the
preparation of safety procedures, and the determination of legal liability. Thus, because of the
impact that modeling and simulation predictions can have, the credibility of the computational
results is of great concern to engineering designers and managers, public officials, and those who
are affected by the decisions that are based on these predictions.

For engineered systems, terminology such as �virtual prototyping� and �virtual testing� is
now being used in engineering development to describe numerical simulation for the design,
evaluation, and �testing� of new hardware and even entire systems. This new trend of modeling
and simulation�based design is primarily driven by increased competition in many markets, e.g.,
aircraft, automobiles, propulsion systems, and consumer products, where the need to decrease the
time and cost of bringing products to market is intense. This new trend is also driven by the high
cost and time that are required for testing laboratory or field components as well as complete
systems. Furthermore, the safety aspects of the product or system represent an important,
sometimes dominant, element of testing or validating numerical simulations. The potential legal and
liability costs of hardware failures can be staggering to a company, the environment, or the public.
This consideration is especially critical, given that we may be interested in the reliability,
robustness, or safety of high-consequence systems that cannot ever be physically tested. Examples
are the catastrophic failure of a full-scale containment building for a nuclear power plant, a fire
spreading through (or explosive damage to) a high-rise office building, ballistic missile defense
systems, and a nuclear weapon involved in a transportation accident. In contrast, however, an
inaccurate or misleading numerical simulation for a scientific research project has comparatively no
impact.

Users and developers of computational simulations today face a critical question: How
should confidence in modeling and simulation be critically assessed? Verification and validation
(V&V) of computational simulations are the primary methods for building and quantifying this
confidence. Briefly, verification is the assessment of the accuracy of the solution to a
computational model by comparison with known solutions. Validation is the assessment of the
accuracy of a computational simulation by comparison with experimental data. In verification, the
relationship of the simulation to the real world is not an issue. In validation, the relationship
between computation and the real world, i.e., experimental data, is the issue.

In the United States, the Defense Modeling and Simulation Office (DMSO) of the Department
of Defense (DoD) has been the leader in the development of fundamental concepts and terminology
for V&V.[48,50] Recently, the Accelerated Strategic Computing Initiative (ASCI) of the
Department of Energy (DOE) has also taken a strong interest in V&V. The ASCI program is
focused on computational physics and computational mechanics, whereas the DMSO has
traditionally emphasized high-level systems engineering, such as ballistic missile defense systems,
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warfare modeling, and simulation-based system acquisition. Of the work conducted by DMSO,
Cohen recently observed:[35] �Given the critical importance of model validation . . . , it is
surprising that the constituent parts are not provided in the (DoD) directive concerning . . .
validation. A statistical perspective is almost entirely missing in these directives.� We believe this
observation properly reflects the state of the art in V&V, not just the directives of DMSO. That is,
the state of the art has not developed to the place where one can clearly point out all of the actual
methods, procedures, and process steps that must be undertaken for V&V.

It is fair to say that computationalists (code users and code developers) and experimentalists
in the field of fluid dynamics have been pioneers in the development of methodology and
procedures in validation. However, it is also fair to say that the field of computational fluid
dynamics (CFD) has, in general, proceeded along a path that is largely independent of validation.
There are diverse reasons why the CFD community has not perceived a strong need for code V&V,
especially validation. One reason is that a competitive and frequently adversarial relationship (at
least in the United States) has often existed between computationalists and experimentalists,
resulting in a lack of cooperation between the two groups. We, on the other hand, view
computational simulation and experimental investigations as complementary and synergistic. To
those who might say, �Isn�t that obvious?� We would answer, �It should be, but they have not
always been viewed as complementary.� In retrospect, the relationship between computationalists
and experimentalists is probably understandable because it represents the classic case of a new
technology (computational simulation) that is rapidly growing and attracting a great deal of
visibility and funding support that had been the domain of the older technology (experimentation).

It is our view that the field of structural dynamics has enjoyed, in general, a more beneficial
and synergistic relationship between computationalists and experimentalists. We believe this type
of relationship has developed because of the strong dependence of structural dynamics models on
experimental measurements. Most researchers in the field of structural dynamics have referred to
this interaction as �model validation.� As discussed in Section 2.1, we believe a more precise term
for this interaction is either �model updating� or �model calibration.� That is, the primary
interaction between computation and experiment is to update or �tune� the unknown parameters in
the computational model using the experimental results from modal testing. This approach in
structural dynamics has proven to be very effective because it permits the estimation of specific
constituents of poorly known physics in the computational models. In structural dynamics the
problem primarily arises in poor understanding of the localized deformation of connectors and
joints between structural elements in the computational models. A similar approach is used in fluid
dynamics when dealing with turbulent reacting flows and two-phase flows.

From a historical perspective, the operations research (OR) and systems engineering
communities have provided the philosophical foundations for verification and validation. With the
recent interest in V&V from the CFD and computational physics communities, one recognizes
significant differences in perspectives between the historical view and the view held by the
computational physics community. (For simplicity, we will refer to all fields of computational
engineering and physics, e.g., CFD, computational solid mechanics, structural dynamics, shock
wave physics, computational chemistry, etc., as computational physics.)

1.2 Basic Terminology and Methodology

There is a wide variety of different meanings used for V&V in the various technical
disciplines. For example, the meanings used by the Institute of Electrical and Electronics Engineers
(IEEE) and the software quality assurance community are different than the meanings used in the
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DoD modeling and simulation community. And given that members of the different technical
communities often work together on V&V activities, we expect there will be long-term ambiguity
and confusion resulting from terminology differences. Although we have not reviewed all of the
different meanings in this paper, we refer the reader to references that describe the varying
usage.[3,7,49,50,96-98] For a review of the historical development of the terminology for
verification, validation, and prediction, see, for example, Refs. [134,142,144].

The DMSO under the DoD has played a major role in attempting to standardize the definitions
of V&V. In 1994 the DoD published definitions of V&V that are clear, concise, and directly useful
by themselves.[48-50] From the perspective of the computational engineering and physics
communities, however, the definition of verification by the DoD does not make it clear that the
accuracy of the numerical solution to the partial differential equations (PDEs) should be included in
the definition. To clarify this issue, the CFD Committee on Standards of the American Institute of
Aeronautics and Astronautics (AIAA) proposed a slight modification to the DoD definition. This
paper will use the DoD definitions, with the AIAA modification for verification:[3]

Verification: The process of determining that a model implementation accurately represents the
developer's conceptual description of the model and the solution to the model.

Validation: The process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model.

We think that the best graphical representation of these definitions was constructed by the
Society for Computer Simulation (SCS) in 1979, as shown in Fig. 1. The figure identifies two
types of models: a conceptual model and a computerized model. The conceptual model is
composed of all mathematical modeling data and mathematical equations that describe the physical
system or process of interest. The conceptual model is produced by analyzing and observing the
physical system. In computational physics, the conceptual model is dominated by the PDEs for
conservation of mass, momentum, and energy. The conceptual model also includes all of the
auxiliary equations, such as turbulence models, constitutive models for materials, and
electromagnetic cross-section models, and all of the initial conditions and boundary conditions of
the PDEs. The computerized model is an operational computer program that implements a
conceptual model. Modern terminology refers to the computerized model as the computer model or
code. Figure 1 clearly shows that verification deals with the relationship between the conceptual
model and the computerized model and that validation clearly deals with the relationship between
the computerized model and experimental measurements. The SCS defined qualification as the
�Determination of adequacy of the conceptual model to provide an acceptable level of agreement for
the domain of intended application.� According to this definition, qualification would deal with
issues such as, definition of the system of interest, effects of the environment on the system, and
the choice of PDEs in computational physics. The topic of conceptual model qualification will not
be addressed in this paper.
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Figure 1
Phases of Modeling and Simulation and the Role of V&V[172]

Fundamentally, V&V are tools for assessing the accuracy of the conceptual and computerized
models. For much of the OR work, the assessment was so difficult, if not impossible, that V&V
became more associated with the issue of credibility, i.e., the quality, capability, or power to elicit
belief. In science and engineering, however, quantitative assessment of accuracy, at least for some
important physical cases, is mandatory; it is a necessary condition for credibility. And in certain
situations, assessment can only be conducted using subscale physical models or a subset of the
active physical processes. Regardless of the difficulties and constraints, methods must be devised
for measuring the accuracy of the model for as many conditions as the model is deemed
appropriate. As the complexity of a model increases, its accuracy and range of applicability become
more difficult to assess.

Some important implications and subtleties in the definitions of V&V need to be addressed at
this point. The first significant feature is that both V&V are �process[es] of determining.� That is,
they are ongoing activities that do not have a clearly defined completion point. Completion or
sufficiency is usually determined by practical issues such as budgetary constraints and intended
uses of the model. The definitions include the ongoing nature of the process because of an
unavoidable but distressing fact: the veracity, correctness, and accuracy of a computerized, or
computational, model cannot be demonstrated for all possible conditions and applications, except
for trivial models. Trivial models are clearly not of interest. All-encompassing proofs of
correctness, such as those developed in mathematical analysis and logic, do not exist in complex
modeling and simulation. Indeed, one cannot prove that complex computer codes have no errors.
Likewise, models of physics cannot be proven correct; they can only be disproved. Thus, V&V
activities can only assess the correctness or accuracy of the specific cases tested.

The emphasis on �accuracy� is the second feature that is common in the definitions of V&V.
This feature assumes that a measure of correctness can be determined. In verification activities,
accuracy is generally measured in relation to benchmark solutions of simplified, or closely related,
model problems. Benchmark solutions refer either to analytical solutions, i.e., exact solutions to
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the PDEs with the specified initial conditions and boundary conditions, or to highly accurate
numerical solutions. However, we believe that in the solution of nonlinear PDEs or solutions with
discontinuities or singularities the most reliable benchmark solutions are analytical solutions. In
validation activities, accuracy is measured in relation to experimental data, i.e., our best indication
of reality. Since all experimental data have random (statistical) and bias (systematic) errors, the
issue of �correctness,� in an absolute sense, becomes impossible. From an engineering
perspective, however, we do not require �absolute truth�: we only expect a statistically meaningful
comparison of computational results and experimental measurements. These issues are discussed
in more detail in Section 2.4.

Effectively, verification provides evidence (substantiation) that the conceptual (continuum
mathematics) model is solved correctly by the discrete-mathematics computer code. (Note: When
we refer to �continuum mathematics� we are not referring to the physics being modeled by the
mathematics. For example, the equations for noncontinuum fluid dynamics are commonly
expressed with continuum mathematics.) Verification does not address whether the conceptual
model has any relationship to the real world. Validation, on the other hand, provides evidence
(substantiation) for how accurately the computational model simulates reality. This perspective
implies that the model is solved accurately. However, multiple errors or inaccuracies can cancel
one another and give the appearance of a validated solution. Verification, thus, is the first step of
the validation process and, while not simple, is much less involved than the more complex
statistical nature of validation. Validation addresses the question of the fidelity of the model to
specific conditions of the real world. As Roache[161] succinctly states, �Verification deals with
mathematics; validation deals with physics.�

As a final comment on terminology, it is our view that the DoD definition of validation does
not include the concept of adequacy of the computational result for the intended uses of the
model. Stated differently, we argue that validation is the process of determining the degree to
which a computational simulation results agree with experimental data. We recognize that this
interpretation of the meaning of validation is narrower than the interpretation that is widely accepted
in the DoD community. It is our understanding that the DoD community considers validation to be
the process of determining the degree to which the computational model results are adequate for
the application of interest. This important topic of divergent interpretations of validation is briefly
discussed in recommendation for future work, Section 4.4. Regardless of whether or not the
reader agrees with our interpretation, we have chosen to clarify our view now to help avoid
confusion throughout the paper. Stating our view succinctly: validation deals with comparisons
between experimental data and computational data; not the adequacy of the comparisons.

In 1998, the Computational Fluid Dynamics Committee on Standards of the AIAA
contributed to the basic methodology and procedures for V&V.[3] The Guide for the Verification
and Validation of Computational Fluid Dynamics Simulations, referred to herein as the �AIAA
Guide� was the first engineering standards document that addressed issues of particular concern to
the computational physics community. In the following paragraphs we have briefly summarized
the basic methodology for V&V from the AIAA Guide.

The fundamental strategy of verification is to identify, quantify, and reduce errors in the
computational model and its numerical solution. Figure 2 depicts the verification process of
comparing the numerical solution from the code in question with various types of highly accurate
solutions.[3] Given a numerical procedure that is stable, consistent, and robust, the five primary
sources of errors in computational physics solutions are (1) insufficient spatial discretization, (2)
insufficient temporal discretization, (3) insufficient iterative convergence, (4) computer round-off,
and (5) computer programming. The emphasis in verification is on identifying and quantifying
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errors from these various sources, as well as on demonstrating the stability, consistency, and
robustness of the numerical scheme. Stated differently, an analytical or formal error analysis is
inadequate in the verification process; verification relies on demonstration and quantification of
numerical accuracy. Note that the recommended methodology presented here applies to finite-
difference, finite-volume, finite-element, and boundary-element discretization procedures.

VERIFICATION
TEST

=
Comparison and

 Test of Agreement

COMPUTATIONAL
SOLUTION

COMPUTATIONAL
MODEL

CONCEPTUAL
MODEL

CORRECT ANSWER
PROVIDED BY HIGHLY

ACCURATE SOLUTIONS

� Analytical Solutions

� Benchmark Ordinary
     Differential Equation
     Solutions

� Benchmark Partial
     Differential Equation
     Solutions

Figure 2
Verification Process[3]

The first three error sources listed in the previous paragraph (spatial discretization, temporal
discretization, and iterative procedure) are considered to be within the traditional realm of
computational physics, and there is extensive literature dealing with each of these topics. The
fourth error source, computer round-off, is rarely dealt with in computational physics.
Collectively, these four topics in verification could be referred to as solution verification or solution
error assessment. The fifth error source, computer programming, is generally considered to be in
the realm of computer science or software engineering. Programming errors, which can occur, for
example, in input data files, source-code programming of the numerical algorithm, output data
files, compilers, and operating systems, generally are addressed using methods and tools in
software quality assurance (SQA), also referred to as software quality engineering (SQE).[110]
The identification of programming errors is usually referred to as code verification, as opposed to
solution verification.[161,162] In our opinion, the perspectives and emphases of SQA and
computational physics are sufficiently different and thus should be addressed separately: code
verification, which emphasizes the accuracy of the numerical algorithm that is used to solve the
discrete form of the PDEs, and SQA, which emphasizes the issues in computer science. Each of
these topics is discussed in Section 2.3.

The fundamental strategy of validation involves identifying and quantifying the error and
uncertainty in the conceptual and computational models, quantifying the numerical error in the
computational solution, estimating the experimental uncertainty, and then comparing the
computational results with the experimental data. This strategy does not assume that the
experimental measurements are more accurate than the computational results. The strategy only
asserts that experimental measurements are the most faithful reflections of reality for the purposes
of validation. Validation requires that the estimation process for error and uncertainty must occur
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on both sides of the coin: mathematical physics and experiment. Figure 3 depicts the validation
process of comparing the computational results of the modeling and simulation process with
experimental data from various sources.[3]

COMPUTATIONAL
MODEL

=

VALIDATION
TEST

CORRECT ANSWER
PROVIDED BY

EXPERIMENTAL DATA

� Unit
  Problems

� Benchmark
  Cases

� Subsystem
  Cases

� Complete
  SystemComparison and

 Test of Agreement

COMPUTATIONAL
SOLUTION

CONCEPTUAL
MODEL

REAL
WORLD

Figure 3
Validation Process[3]

Because of the infeasibility and impracticality of conducting true validation experiments on
most complex or large scale systems, the recommended method is to use a building-block
approach.[3,38,123,126,175,176] This approach divides the complex engineering system of
interest into at least three progressively simpler tiers: subsystem cases, benchmark cases, and unit
problems. The strategy in the tiered approach is to assess how accurately the computational results
compare with the experimental data (with quantified uncertainty estimates) at multiple degrees of
physics coupling and geometric complexity. The approach is clearly constructive in that it (1)
recognizes that there is a hierarchy of complexity in systems and simulations and (2) recognizes
that the quantity and accuracy of information that is obtained from experiments vary radically over
the range of tiers. Furthermore, this approach demonstrates that validation experiments can be
conducted at many different levels of physics and system complexity. Each comparison of
computational results with experimental data allows an inference of validation concerning tiers both
above and below the tier where the comparison is made. However, the quality of the inference
depends greatly on the complexity of the tiers above and below the comparison tier. For simple
physics, the inference may be very strong, e.g., laminar, single phase, Newtonian, nonreacting
flow, and rigid-body structural dynamics. However, for complex physics, the inference is
commonly very weak, e.g., turbulent reacting flow and fracture dynamics. This directly reflects
the quality of our scientific knowledge about the experiments and calculations that are being
compared for more complex tiers.
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1.3 Outline of the Paper

This paper presents our viewpoint on the state of the art in V&V in computational physics.
We have not attempted herein to provide a comprehensive review of the multitudinous
contributions to V&V from many diverse fields. This literature represents distinctively different
perspectives and approaches, ranging from engineering and physics to operations research. Recent
reviews of the literature are given in Refs. [14,107,108,130,143,161,164,195]. Recent work
providing wide-ranging procedures in V&V is described in Refs. [27,143,144,155,185]. We have
attempted in this paper to bring together many different perspectives on V&V, highlight those
perspectives that are effective from a practical engineering viewpoint, suggest future research
topics, and discuss key implementation issues that are necessary to improve the effectiveness of
V&V. Our views about the research needs and management issues in V&V are very practical: What
methods and techniques need to be developed and what changes in the views of management need
to occur to increase the usefulness, reliability, and impact of computational physics for decision
making about engineering systems?

Section 2 describes the primary processes in V&V and the relationship of V&V to predictive
capability. V&V are the key building blocks in assessing the confidence in the predictive capability
of a computational physics code. The section begins with a description of the framework in which
predictive capability relies on V&V, as well as other factors that affect predictive capability. We
also briefly discuss how this framework is related to more traditional approaches of predictive
capability, e.g., Bayesian estimation. The importance of requirements for a computational-physics
capability is stressed so that effective and efficient V&V activities can be conducted. Following the
framework discussion, we present a summary of verification activities, emphasizing code
verification, SQA, and numerical error estimation. A discussion of validation activities follows,
highlighting methods for focusing on the validation experiments most important to the predictive
capability required. The section concludes with a discussion of hierarchical experiments for
validation, characteristics of validation experiments, the need to perform nondeterministic
simulations in comparisons with experimental data, and validation metrics.

Section 3 discusses the research issues that we believe must be addressed for V&V to be
more effective in improving confidence in computational predictive capability. We begin with a
discussion of methods for prioritizing V&V assessment activities. Needed research in verification
activities, such as statistical methods for code verification and the method of manufactured
solutions, are discussed. Topics discussed with regard to validation research are: development and
use of hierarchical validation diagrams; and the construction and use of validation metrics
incorporating statistical measures. We close the section with the difficult research issue of how to
quantify uncertainty in predictive capability, given an arbitrary set of validation experiments, e.g.,
how to estimate the uncertainty of a computational prediction when, in some sense, we are
extrapolating beyond the validation database.

Section 4 discusses issues related to improving the implementation of V&V activities in a
realistic engineering environment and a commercial software environment. These issues include
needed improvements in management of verification activities, the key role of analysts and decision
makers as code customers, and obstacles to the improved effectiveness of V&V. Examples of
obstacles are conflicting perspectives of code developers, analysts, hardware designers, and
experimentalists,  competition between organizations and nations, and the loss of focus on the
needs of the customer for computational physics analyses. Also discussed are the effects of cost
and schedule constraints on practical applications in industrial settings, the demands of customers
on commercial software companies, and the large-scale validation database activity underway in
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Europe.
Section 5 presents some closing remarks concerning the status of V&V and the need for

improvement.

2. Primary Processes

2.1 Framework for Predictive Capability

The issues underlying the V&V of mathematical and computational models of physical
systems, including those systems with strong human interaction, touch on the very foundations of
mathematics, science, and human behavior. Verification is rooted in issues pertaining to continuum
and discrete mathematics and to the accuracy and correctness of complex logical structures
(computer codes). Validation is deeply rooted in the question of how formal constructs
(mathematical models) of nature and human behavior can be tested by physical observation. In the
OR field, the systems being analyzed can be extraordinarily complex, such as industrial planning
models, marketing models, national and world economic models, monetary investment models,
and military conflict models. For these types of situations, one must deal with statistical models
where statistical calibration and parameter estimation are crucial elements in building the models.
These complex models commonly involve a strong coupling of complex physical processes,
human behavior, and computer-controlled systems. For such complex systems and processes,
fundamental conceptual issues immediately arise about how to assess the accuracy of the model
and the resulting simulations. Indeed, the predictive accuracy of most of these models cannot be
assessed in any meaningful way, except for predictive cases that are very near, in some sense, the
calibration database.

In the AIAA Guide, prediction is defined as �use of a computational model to foretell the state
of a physical system under conditions for which the computational model has not been validated.�
A prediction refers to the computational simulation of a specific case of interest that is different
from cases that have been validated. This definition of prediction is more restrictive than the
general scientific meaning of prediction because it eliminates past comparisons of computational
results with experimental data. This definition segregates the general meaning of prediction and
only refers to prediction, not retrodiction (replication of previously obtained results). If this
restriction is not made, then one is only demonstrating previous agreement with experimental data
in the validation database. The results of the process of validation should be viewed as historical
statements. Thus, the validation database represents reproducible evidence that a model has
achieved a given level of accuracy in the solution of specified problems. From this perspective, it
becomes clear that validation comparisons do not directly allow one to make claims about the
accuracy of predictions; they allow inferences to be made. The strength of the inferences depends
on many factors. The suggested the relationship between validation and prediction is shown in Fig.
4.

Figure 4 attempts to capture the distinction between validation and prediction. The bottom
portion of the figure represents the validation process. Although it is not readily apparent, the
validation process in Fig. 4 is fundamentally the same as that shown in Fig. 3. In Fig. 4, the block
�Validation Experiments� produces one or more realizations of the �Real World.� The
�Experimental Outcomes� are the physical realizations, i.e., the experimental data from the
experiment. The physical conditions from the actual validation experiments, i.e., model input
parameters, initial conditions, and boundary conditions, are input to the �Computational Model,�
which produces the �Computational Results of Experimental Outcomes.� These results are then 
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Relationship of Validation to Prediction[57,143,144]

compared with the experimentally determined outcomes in the block �Differences Between
Computation and Experiment.� Based on the magnitude of these differences in quantities of interest
in the simulation and on the understanding of the physical process, an �Inference from
Comparisons� is made.

The upper portion of Fig. 4 represents the prediction process. The �Complex System� of
interest should drive the entire modeling and simulation process, but most of the realizations of
interest, i.e., predictions, are not in the validation database. That is, when a physical realization is
conducted as part of the validation database, regardless of the tier as discussed in Section 2.4.2,
the realization becomes part of the �Validation Experiments.� Predictions for conditions of interest
are made using the �Computational Model,� resulting in �Computational Predictions of Complex
System Outcomes.� The confidence in these predictions is determined by the �Inference from
Comparisons� and the level of understanding of the physical process.

The process of logical inference of accuracy of a computational model stemming from its
associated validation database is analogous to similar processes and conclusions for classical
scientific theories. However, we argue that the strength or confidence in the inference from
computational simulation is, and should be, much weaker than traditional scientific theories.
Computational simulation relies on the same logic as traditional science, but it also relies on many
additional mathematical issues, e.g., discretization algorithms and grid quality, and practical
issues, e.g., computer hardware, operating-system software, source-code reliability, and analyst
skill, that are not present in classical science. (In this paper �analyst� refers to the individual, or
group of individuals, who constructs the computational model, including all physical and
numerical inputs to the model, and then uses the computer code to produce a simulation.) One of
the key theoretical issues is the state of knowledge of the process being modeled. Zeigler et al[195]
gives a detailed discussion of hierarchical levels of knowledge of a system. For physical processes
that are well understood both physically and mathematically, the inference can be quite strong. For
complex physical processes, the inference can be quite weak. A general mathematical method for
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determining how the value and consequence of such an inference degrades as the physical process
becomes more complex has not been formulated. For example, in a complex physical process how
do you determine �how nearby� the prediction case is from cases in the validation database?
Struggling with the strength or quantification of the inference in a prediction is presently an
important topic of research.[29,195]

To properly deal with the issue of predictive capability requires a more careful distinction
between error and uncertainty than has traditionally been made in the literature. The AIAA
Guide[3] (see also Refs. [139-141]) defines error to be �A recognizable deficiency in any phase or
activity of modeling and simulations that is not due to lack of knowledge.� This definition
emphasizes the required feature that the deficiency is identifiable or knowable upon examination;
that is, the deficiency is not caused by lack of knowledge. This definition leads to the so-called
acknowledged and unacknowledged errors. An acknowledged error is characterized by
knowledge of divergence from an approach or ideal condition that is considered to be a baseline for
accuracy. Examples of acknowledged errors are finite precision arithmetic in a computer,
approximations made to simplify the modeling of a physical process, and conversion of PDEs into
discrete equations. An acknowledged error can therefore be measured in principle because its
origins are fully identified. Solution verification, i.e., solution error estimation, deals with
acknowledged errors. For example, we know that the discretization of the PDE and the
approximate solution of the discrete equations introduce acknowledged errors. Unacknowledged
errors are blunders or mistakes such as programming errors, input data errors, and compiler
errors. There are no straightforward methods for estimating, bounding, or ordering the
contributions of unacknowledged errors. Code verification and SQA activities primarily deal with
unacknowledged errors: another important reason these activities are essential.

In a technical sense, the term uncertainty seems to have two rather different meanings. The
first meaning of uncertainty has its roots in probability and statistics: the estimated amount or
percentage by which an observed or calculated value may differ from the true value. This meaning
of uncertainty has proven its usefulness over many decades, particularly in the estimation of
random uncertainty in experimental measurements.[36] The second meaning of uncertainty relates
to lack of knowledge about physical systems, particularly in the prediction of future events and the
estimation of system reliability. The probabilistic-risk and safety assessment communities, as well
as the reliability engineering community, use the term epistemic uncertainty in this latter sense.
The risk assessment community[40,63,65,84,94,151] refers to the former meaning, random
uncertainty, as aleatory uncertainty, as does the information theory
community.[6,54,109,111,112,179]

Aleatory uncertainty is used to describe the inherent variation associated with the physical
system or environment being considered. Sources of aleatory uncertainty can commonly be singled
out from other contributors to uncertainty by their representation as randomly distributed quantities
that can take on values in an established or known range, but for which the exact value will vary by
chance from unit to unit or from time to time. The mathematical representation most commonly
used for aleatory uncertainty is a probability distribution. Aleatory uncertainty is also referred to in
the literature as variability, irreducible uncertainty, inherent uncertainty, and stochastic uncertainty.

Epistemic uncertainty as a cause of nondeterministic behavior derives from some level of
ignorance or lack of knowledge about the system or the environment. Thus an increase in
knowledge or information can lead to a reduction in the predicted uncertainty of the system�s
response�all things being equal. Epistemic uncertainty can be introduced from a variety of
sources, such as limited or nonexistent experimental data for a fixed (but unknown) physical
parameter, limited understanding of complex physical processes, and insufficient knowledge
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concerning initial conditions and boundary condition in an experiment. Epistemic uncertainty is
also referred to in the literature as reducible uncertainty, subjective uncertainty, and model form
uncertainty.

To better understand the present perspective of the relationship of prediction to validation,
consider Fig. 5. The �validation domain� in the figure suggests three features. First, in this region
we have high confidence that the relevant physics is understood and modeled at a level that is
commensurate with the needs of the application. Second, this confidence has be quantitatively
demonstrated by satisfactory agreement between computations and experiments in the validation
database for some range of applicable parameters in the model. And third, the boundary of the
domain indicates that outside this region there is a degradation in confidence in the quantitative
predictive capability of the model. Stated differently, outside the validation domain the model is
credible, but its quantitative capability has not be demonstrated. The �application domain� indicates
the region where predictive capability is needed from the model for the applications of interest.

Validation
Domain

x1

x2

x1

x2

b) Partial Overlapa) Complete Overlap

Validation
Domain

Application
Domain

Application
Domain

Application
Domain

Validation
Domain

x1

x2

c) No Overlap

Figure 5
Possible Relationships of the Validation Domain to the Application Domain
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Figure 5a depicts the prevalent situation in engineering which shows the complete overlap of
the validation domain with the application domain. The vast majority of modern engineering
system design is represented in Fig. 5a. Figure 5b represents the occasional engineering situation
where there is significant overlap between the validation domain and the application domain. Some
examples are: prediction of crash response of new automobile structures, entry of spacecraft
probes into the atmosphere of another planet, and the structural response of new designs for deep-
water offshore oil platforms. Figure 5c depicts the situation where there is no overlap between the
validation domain and the application domain.[57] We believe that predictions for many high-
consequence systems are in this realm because we are not able to perform experiments for closely
related conditions. We believe that the inference from the validation domain can only be made
using both physics-based models and statistical methods. The need to perform this extrapolation
reinforces our need for models to be judged to achieve the right answer for the right reasons in the
validation regime. Model calibration, which employs explicit tuning or updating of model
parameters to achieve some degree of agreement with existing validation experiments, does not
fully assess uncertainty in the predictive use of the model.

The requirement for predictive code use �far from� the validation database necessitates
extrapolation beyond the understanding gained strictly from experimental validation data. This type
of uncertainty in our statistical inference is primarily epistemic uncertainty. For example, the
modeling of specific types of interactions of physical processes may not have been validated
together in the given validation database. There is then uncertainty in the accuracy of model
predictions describing such interactions. Traditional applications of computational physics have
typically not had to deal with consequential predictive extrapolation. However, some exceptions to
this statement are computational modeling performed as part of the safety assessment of nuclear-
reactors during failure scenarios[102,113,127,132] and the assessment of nuclear-waste-
repository performance.[86,87,128,152]

2.2 Modeling and Simulation Requirements

To improve the efficiency and confidence-building impact of V&V, we believe it is necessary
to improve the coupling of V&V activities with the requirements of the intended application of the
computational physics code. Figure 6 depicts a recent high-level view of the role of experimental
validation in evaluating the predictive capability of a computational physics code.[185] Validation
and the associated constraints on validation experiments cannot be separated from the requirements
for application of the code, nor can validation be separated from the ultimate predictions that are
demanded of the code. In Fig. 6 we suggest that the validation-prediction process relies upon the
following activities:

1. Identification and specification of the application driver that focuses the use of the code
under discussion

2. Careful planning of V&V activities, especially the use of the Phenomena Identification and
Ranking Table (PIRT) to prioritize V&V activities for the application driver

3. Development, implementation, and documentation of code verification and SQA activities
for the code, as well as solution error assessment of validation calculations

4. Design and execution of validation experiment activities in accordance with the PIRT
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5. Development and definition of appropriate metrics for comparing computational results
with experimental results to measure confidence in the intended application of the code

6. Assessing the success or failure of the code using the results of the validation metrics

7. Assessment of the required predictive accuracy of the code using the validation metrics and
the application driver of the code

8. Accurate and full documentation of the planning, results, and consequences of the
validation activities, especially their implications for predictive confidence for the
application driver of the code
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V&V Planning
Activities
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SQA Activities,
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Definition of
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Figure 6
V&V Activities and Predictive Capability

(Adapted from Ref. [185])

Although Ref. [185] discusses in detail each of these eight activities, we only comment on
the two key activities that directly address the focus of V&V on the requirements of the application:
block 1 �Intended Application� and block 2 �Planning.� The intended application is the application
for which the modeling and simulation capability is being developed. Concerning application
requirements, validation activities must assess confidence in the use of the code for a specified
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application. The application requirement at which a particular validation activity is directed is a
critical planning element and must be defined before the performance of any specific validation
work. One of the methods in risk assessment for identifying specific applications deals with
identifying system-application scenarios. In the nuclear weapons area, event scenarios are
segregated into three wide categories to which the engineering system might be exposed: normal,
abnormal, and hostile environments. Although these categories may not be appropriate for all
engineering systems, we believe they are a helpful framework for many types of systems, e.g.,
systems ranging from military and commercial aircraft to spacecraft to power generation facilities
and public buildings.

Regarding planning, we believe the PIRT is the most important tool in the planning process
for translating technical requirements for the relevant code application into prioritized requirements
for V&V activities.[155] The PIRT was developed to assess the safety of nuclear reactors and has
primarily been used for that purpose.[22,191-193,197] The PIRT is critical for planning validation
experiments because it helps establish both sufficiency and efficiency of the validation activities.
To demonstrate sufficiency requires a careful response to the question, What has to be done to
establish a necessary level of confidence in the application of the code? To demonstrate efficiency
requires evidence that limited resources (people, money, time) are balanced as a result of planning,
not simply as a reaction to circumstances. We presume in this paper that dedicated validation
experiments supporting the validation assessment of a particular code application are directed at the
most important elements in the associated PIRT. If this is not true, there is already a revealed
weakness in the planned validation activities. The planning for the dedicated validation experiments
should make this direction explicit and clear.

The PIRT addresses five aspects of V&V that relate to the application requirements. Depicted
in Fig. 7, these aspects are as follows:

1) Physical Phenomena Importance. The PIRT systematically identifies the physical
phenomena that are needed for the modeling and simulation application requirements. Each
phenomenon must be prioritized, and the criteria applied to accomplish this prioritization
must be described. Occasionally, these criteria must span the scenarios of normal,
abnormal, and hostile environments.

2) Conceptual Model Adequacy. The PIRT identifies the adequacy of the existing set of
needed physical phenomena for the application requirements. 

3) Code Verification Adequacy. The PIRT identifies the adequacy of the set of code-
verification test cases.

4) Experimental Adequacy. The PIRT identifies the adequacy of existing experimental data
required for model validation. If existing data are inadequate for the validation
requirements, resources must be allocated and planning begun for the needed additional
validation tasks.

5) Validation Adequacy. The PIRT identifies the validation metrics needed for the
requirements and the accuracy requirements needed for these metrics. Two types of
validation adequacy must therefore be addressed: (1) identification of the validation metrics
and (2) specification of the magnitude of the metrics to satisfy the application requirements.
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Stated differently, both the metrics and the success and failure criteria should be determined
for assessing the expected adequacy of the outcomes of experimental-computational
comparisons. However, as stated previously, the requirement for the adequacy of all of the
specified metrics is coupled to the overall application requirements; hence, the process of
specifying the validation metrics will interact with the process of specifying the application
requirements.

Application Requirements

Physical
Phenomena
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Adequacy

Code
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Adequacy

Experimental
Adequacy

Validation
Adequacy

PIRT

C a t a g o r i e s  o f  P I R T  I n f o r m a t i o n

Figure 7
 Aspects of PIRT Related to Application Requirements

(adapted from Ref. [185])

As stressed by Boyack,[22] the PIRT is certainly not set in stone once it is formulated and
documented. While a given formulation of the PIRT guides V&V activities, the PIRT must also be
adaptable to reflect information gathered during the conduct of these activities. Importantly, to gain
the greatest advantage of its value during planning, the PIRT can and probably should be adapted
as experimental validation activities are conducted. Several different outcomes illustrate how
experimental validation activities can interact with and influence changes to the PIRT:

� A validation experiment may be planned and conducted under the assumption that a specific
PIRT element has high importance. After the results of the experiment are analyzed, the
importance of that PIRT element is found to change from high to medium or low in
response to these results. This does not argue that the underlying application requirements
could or would change as a result of experiments, only that the technical importance of an
element for validation may change.

� An experiment is conducted that reveals a shift of a PIRT element from low to high
importance. This may require, for example, that a subsequent exploratory experiment be
performed that was not identified in the existing PIRT.
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� An experiment addressing a high-importance PIRT element is performed. The current code
implementation addressing that phenomenon is believed to be adequate. However, it is
discovered unexpectedly that the code cannot even function properly in defining the
proposed experiments, thereby changing the ranking of the implementation to inadequate.

� An experiment designed to probe fully coupled phenomena reveals the presence of a
completely unexpected and unknown phenomenon that is of high importance for the
application driver. Not only must the PIRT be changed to reflect this event, but also the
overall V&V effort for the code application may require significant revision. For example, a
previously low-ranked phenomenon may now be ranked high or a planned validation
experiment may have to be redefined as a phenomenon-exploration experiment.

� A validation experiment for a single phenomenon reveals that certain models implemented
in the code must be recalibrated. This changes the code implementation from adequate to
incomplete and may require additional planning for calibration experiments to improve the
pre-calibration model capabilities.

2.3 Verification Activities

2.3.1 Fundamentals of Verification

Two types of verification are generally recognized in computational modeling: code
verification and solution verification.[161,162] Because of recent work by several
investigators,[142,143] we now believe that code verification should be segregated into two parts:
numerical algorithm verification and SQA (software quality assurance). Numerical algorithm
verification addresses the software reliability of the implementation of all of the numerical
algorithms that affect the numerical accuracy and efficiency of the code. In other words, this
verification process focuses on how correctly the numerical algorithms are programmed
(implemented) in the code. This issue is of paramount importance in computational physics codes,
whereas in conventional areas of application of SQA, such as real-time control systems, this issue
receives less emphasis. The major goal of numerical algorithm verification is to accumulate
sufficient evidence to demonstrate that the numerical algorithms in the code are implemented
correctly and functioning as intended. SQA emphasizes determining whether or not the code as a
software system is reliable (implemented correctly) and produces repeatable results on specified
computer hardware and a specified system with a specified software environment, including
compilers, libraries, etc. SQA focuses on the code as a software product that is sufficiently reliable
and robust from the perspective of computer science and software engineering. SQA procedures
are needed during software development and modification, as well as during production-computing
operations.

Solution verification deals with the quantitative estimation of the numerical accuracy of a
given solution to the PDEs. Because, in our opinion, the primary emphasis in solution verification
is significantly different from that in numerical algorithm verification and SQA, we believe solution
verification should be referred to as numerical error estimation. That is, the primary goal is
attempting to estimate the numerical accuracy of a given solution, typically for a nonlinear PDE
with singularities and discontinuities. Assessment of numerical accuracy is the key issue in
computations used for validation activities, as well as in application of the code for the intended
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application.
The study of numerical algorithm verification and numerical error estimation is fundamentally

empirical. Numerical algorithm verification deals with careful investigations of topics such as
spatial and temporal convergence rates, iterative convergence, independence of solutions to
coordinate transformations, and symmetry tests related to various types of boundary conditions.
Analytical or formal error analysis is inadequate in numerical algorithm verification: the code must
demonstrate the analytical and formal features of the numerical analysis. Numerical algorithm
verification is conducted by comparing computational solutions with highly accurate solutions. We
believe Roache�s description of this, �error evaluation,� clearly distinguishes it from numerical
error estimation.[163] Numerical error estimation deals with approximating the numerical error for
particular applications of the code when the correct solution is not known. In this sense, numerical
error estimation is similar to validation assessment. We aim to understand what the computational
error is for given calculations or types of calculations, not for code in general.

 In our view, to rigorously verify a code requires rigorous proof that the computational
implementation accurately represents the conceptual model and its solution. This, in turn, requires
proof that the algorithms implemented in the code correctly approximate the underlying PDEs,
along with the stated initial conditions and boundary conditions. In addition, it must also be proven
that the algorithms converge to the correct solutions of these equations in all circumstances under
which the code will be applied. It is unlikely that such proofs will ever exist for computational
physics codes. The inability to provide proof of code verification is quite similar to the problems
posed by validation. Verification, in an operational sense, then becomes the absence of proof that
the code is incorrect. While it is possible to prove that a code is functioning incorrectly, it is
effectively impossible to prove that a code is functioning correctly. Single examples suffice to
demonstrate incorrect functioning, which is also a reason why testing occupies such a large part of
the validation assessment effort.

Defining verification as the absence of proof that the code is wrong is unappealing from
several perspectives. For example, that state of affairs could result from complete inaction on the
part of the code developers or their user community. An activist definition that still captures the
philosophical gist of the above discussion is preferable and has been stressed by Peercy.[154] In
this definition, verification of a code is equivalent to the development of a legal case. Thus,
numerical algorithm verification and SQA activities consist of accumulating evidence substantiating
that the code does not have any apparent algorithmic or programming errors and that the code
functions properly on the chosen hardware and system software. This evidence needs to be
documented, accessible, repeatable, and capable of being referenced. The accumulation of such
evidence also serves to reduce the regimes of operation of the code where one might possibly find
such errors.

The view of code verification in this paper as an ongoing process, analogous to accumulating
evidence for a legal case, is not universally accepted. In an alternative view,[161] code verification
is not considered an ongoing process but one that reaches termination, analogous to proving a
theorem. Obviously, the termination can only be applied to a fixed code; if the code is modified, it
is a new code (even if the name of the code remains the same) and the new code must be verified
again. In addition, all plausible non-independent combinations of input options must be exercised
so that every line of code is executed before one can claim that the entire code is verified;
otherwise, the verification can be claimed only for the subset of options tested. The ongoing code
usage by multiple users still is useful, in an evidentiary sense (and in user training), but is referred
to as confirmation rather than code verification. In this alternative view of verification, it is argued
that contractual and regulatory requirements for delivery or use of a "verified code" can more easily
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be met and that superficial practices are less likely to be claimed as partial verification. Ongoing
usage of the code can possibly uncover mistakes missed in the code verification process, just as a
theorem might turn out to have a faulty proof or to have been misinterpreted; however, in this
view, code verification can be completed, at least in principle. Verification of individual
calculations, as well as validation activities, are still viewed as ongoing processes.

Our view of integrating a set of code verification activities into a verification process for
computational physics is conceptually summarized in Fig. 8. In this figure we have depicted a top-
down process with two main branches: numerical algorithm verification and SQA practices.
Numerical algorithm verification, which is the topic discussed in Section 2.3.2, focuses on the
accumulation of evidence to demonstrate that the numerical algorithms in the code are implemented
correctly and functioning properly. The main technique used in numerical algorithm verification is
testing, which is alternately referred to in this paper as numerical algorithm testing or algorithm
testing. The branch of SQA practices, discussed in Section 2.3.3, includes practices and
procedures associated with SQA. SQA emphasizes programming correctness in the source
program, system software, and compiler software. As shown in Fig. 8, software quality analysis
and testing can be divided into static analysis, dynamic testing, and formal testing. Dynamic testing
further divides into such elements of common practice as regression testing, black-box testing, and
glass-box testing.

CODE VERIFICATION ACTIVITIES

Types of Algorithm Testing:

� Analytic solutions for simplified physics
� Method of manufactured solutions
� ODE benchmark solutions
� PDE benchmark solutions
� Conservation tests
� Alternate coordinate system tests
� Symmetry tests
� Iterative convergence tests

Numerical Algorithm Verification Software Quality Assurance Practices

Configuration Management

Static
Analysis

Formal
Testing

Dynamic
Testing

Software Quality Analysis and Testing

Regression
Testing

Black Box
Testing

Glass Box
Testing

Figure 8. Integrated View of Verification Assessment for Computational Physics
(Adapted from Refs. [143,144])

To the disbelief of many, a recent comprehensive analysis of the quality of scientific software
by Hatton documented a dismal picture.[81] Hatton studied more than 100 scientific codes over a
period of seven years using both static analysis and dynamic testing. The codes were submitted
primarily by companies, but also by government agencies and universities from around the world.
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These codes covered 40 application areas, including graphics, nuclear engineering, mechanical
engineering, chemical engineering, civil engineering, communications, databases, medical
systems, and aerospace. Both safety-critical and non-safety-critical codes were comprehensively
represented. All codes were �mature� in the sense that the codes were regularly used by their
intended users, i.e., the codes had been approved for production use. The total number of lines of
code analyzed in Fortran 66 and 77 was 1.7 million, and the total number of lines analyzed in C
was 1.4 million. As the major conclusion in his study, Hatton stated, �The T experiments suggest
that the results of scientific calculations carried out by many software packages should be treated
with the same measure of disbelief researchers have traditionally attached to the results of
unconfirmed physical experiments.� Hatton�s conclusion is disappointing, but not at all surprising
in our view. We also observe that both Stevenson[182] and Gustafson[75] strongly agree with
Hatton�s view that the problems uncovered by Hatton�s static analysis experiments are basically
independent of the programming language used.

We believe there are several reasons why disciplined testing of computational physics
software is not a common practice. The first reason is that people working on computational
physics codes do not like to be thought of as software engineers. A second reason is that the
perceived risk associated with the incorrect functioning of nearly all computational physics codes is
less than the perceived risk associated with the incorrect functioning of other kinds of software,
such as safety-critical systems. For example, Johnson[100] discusses rigorous approaches to
developing fault-minimal and fault-tolerant avionics software. There are regulatory requirements
governing software verification for avionics applications[61] that are driven by the safety-critical
consequences of software failure. We have never encountered a similar paper in computational
physics that addresses the underlying consequences of software failure as Johnson addresses
them.

2.3.2 Numerical Algorithm Verification

Numerical algorithm testing focuses on numerical correctness and performance of the
algorithms. The major components of this activity include the definition of appropriate test
problems for evaluating solution accuracy and the determination of satisfactory performance of the
algorithms on the test problems. Numerical algorithm verification rests upon comparing
computational solutions to the �correct answer,� which is provided by highly accurate solutions for
a set of well-chosen test problems. The correct answer can only be known in a relatively small
number of isolated cases. These cases therefore assume a very important role in verification and
should be carefully formalized in test plans for verification assessment of the code.

There are two pressing issues that need to be addressed in the design and execution of
numerical algorithm testing. The first issue is to recognize that there is a hierarchy of confidence in
highly accurate solutions. The AIAA Guide,[3] for example, suggests the following hierarchical
organization of confidence for the testing of computational physics codes: (1) exact analytical
solutions, (2) semianalytic benchmark solutions (reduction to numerical integration of ordinary
differential equations [ODEs], etc.), and (3) highly accurate benchmark solutions to PDEs.

The second pressing issue in the design and execution of algorithm testing is to choose
application-relevant test problems that will be used. There are two possible approaches for making
this selection. One approach is to pick test problems that people have a great deal of experience
with. And it would be very advantageous if these problems developed into industry standards that
could be used in verification activities for specific engineering or physics disciplines.
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Unfortunately, no industry-standard test problems currently exist. A second approach is to
construct specialized test problems that address specific needs that arise in the structure of the test
plan. These test problems are specifically constructed to exercise the portions of the software that
one requires.

Both existing test problems and specially constructed test problems can be either analytical
solutions or benchmark solutions. Analytical solutions are closed-form solutions to special cases of
the PDEs that are represented in the conceptual model. These closed-form solutions are commonly
represented by infinite series, complex integrals, and asymptotic expansions. Numerical methods
are usually used to compute the infinite series, complex integrals, and asymptotic expansions in
order to obtain the solutions of interest. However, the accuracy of these solutions can be quantified
much more rigorously than can the accuracy of the numerical solutions of the conceptual model.
When computational solutions are compared with highly accurate solutions, either the comparisons
should be examined along boundaries of interest or the error norms should be computed over the
entire solution domain. The accuracy of each of the dependent variables or functionals of interest
should be determined as part of the comparisons. Note that the most significant practical
shortcoming of analytical solutions is that they exist only for very simplified physics and
geometries.

A technique for developing a special type of analytical solution to be used for testing
numerical algorithms is the �Method of Manufactured Solutions� (MMS).[161,170,173,181] The
MMS is a method of custom-designing verification test problems of wide applicability, where a
specific form of the solution function is assumed to satisfy the PDE of interest. This function is
inserted into the PDE, and all the derivatives are analytically derived. Typically these derivatives
are derived by using symbolic manipulation software such as MACSYMA© or Mathematica©. The
equation is rearranged such that all remaining terms in excess of the terms in the original PDE are
grouped into a forcing-function or source term. This source term is then considered to be simply
added to the original PDE so that the assumed solution function satisfies the new PDE exactly. For
example, in the Navier-Stokes equations this term can be considered to be a source term, i.e., a
new term on the right-hand side of the PDE. The boundary conditions for the new PDE can be
chosen to be the value of the solution function on the boundary (Dirichlet condition), a Neumann
condition that can be analytically derived from the solution function, or a boundary condition of the
third kind. This approach could be described as finding the problem, i.e., the PDE, for which we
have assumed a solution.

Using the MMS in code verification requires that the computed source term and boundary
conditions are programmed into the code and that a numerical solution is computed. This technique
verifies, although for a narrow range of physical modeling, a large number of numerical aspects in
the code, such as the numerical method, differencing technique, spatial-transformation technique
for grid generation, grid-spacing technique, and correctness of algorithm coding. Shih and his
colleagues[174] have applied the MMS to the incompressible Navier-Stokes equations for laminar
two-dimensional flow and have obtained an impressive exact solution to a variant of the classical
lid-driven cavity problem for an arbitrary Reynolds number. It is highly recommended that
incompressible Navier-Stokes codes be verified with this exact solution.

Salari and Knupp[170] have systematically applied the MMS to the compressible and
incompressible Navier-Stokes equations. These researchers have also presented an interesting
study of the �bug-finding� capability of the method to better understand what errors the MMS is
capable of resolving. In the study, the performance of the MMS on a set of 21 different coding
mistakes was examined. The MMS correctly diagnosed every error in the set that prevented the
governing equations from being solved correctly. Salari and Knupp (see also Ref. [161]) noted,
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however, that the MMS is incapable of detecting errors such as algorithm-efficiency mistakes,
which occur in situations where the equations are still solved correctly by the algorithms but the
coding is less efficient than is optimal. These results suggest the desirability of coupling studies
like Hatton�s T1 experiments with a dynamic testing diagnosis like the MMS to better correlate
potential structural flaws with actual incorrect numerical performance. Such a study has yet to be
performed.

In numerical algorithm testing the key feature to determine is the observed, or demonstrated,
order of accuracy from particular numerical solutions. This should then be compared with the
formal order of accuracy of the numerical method. Researchers have found a number of reasons
why the observed order of accuracy can be less than the formal accuracy. Some of the reasons are:
(1) a programming error exists in the numerical algorithm, (2) insufficient grid resolution so that
the grid is not in the asymptotic convergence region of the Taylor series expansion for the
particular solution variable of interest, (3) the formal accuracy for interior grid points is different
than the formal accuracy for boundary conditions with derivatives resulting in a mixed order of
accuracy, (4) singularities, discontinuities, and contact surfaces interior to the domain of the PDE,
(5) grid clustering, (6) singularities and discontinuities in the boundary conditions, (7) inadequate
convergence of an iterative procedure in the numerical algorithm, and (8) over-specified boundary
conditions. It is beyond the scope of this paper to discuss these in detail, however some of the
representative references in these topics are [8,17,19,26,47,64,104,161,167,168,180,186]. It is
our view that most of these reasons for degradation in formal order of accuracy are poorly
understood and significant research is needed in this area.

Returning to the topic of types of highly accurate solutions, benchmark ODE solutions are
very accurate numerical solutions to special cases of the general PDEs. These solutions commonly
result from simplifying assumptions, such as simplified geometries that allow solutions in the
formation of similarity variables. Benchmark PDE solutions are also very accurate numerical
solutions to special cases of the PDEs or the boundary conditions. The accuracy of the benchmark
solutions, whether ODE or PDE solutions, clearly becomes more of an issue as one moves away
from analytical solutions. In the literature, for example, one can find descriptions of computational
simulations that are considered to be of high accuracy by the author but are later found to be
lacking. It is strongly recommended that no published solution be considered a numerical
benchmark solution until: (1) the code used in producing the solution has be thoroughly verified
and documented, (2) very comprehensive numerical error estimation is reported with the solution,
and (3) the solution has been accurately calculated by independent investigators, preferably those
who use different numerical approaches and computer codes.

Consistency tests can also be usefully employed as numerical algorithm tests. Global as well
as regional tests can be made for the conservation of mass, momentum, and energy.[82] A number
of tests can also be made that are related to the effect of numerical boundary conditions on the
solution. One group of tests is used to determine if the same numerical solution is obtained in
different coordinate systems.[177] Another group of tests is used to evaluate whether certain
symmetry features are preserved in the solution. For example, if a plane of symmetry exists in the
conceptual model, then the normal gradient of appropriate variables can be set to zero and a
solution can be obtained. The same solution should also be obtained if this plane-of-symmetry
condition is not imposed and the entire domain is solved. For unbounded domains, the boundaries
of the computational domain are conceptually considered to be at infinity, i.e., the boundaries are
infinitely far from the spatial region of interest. Typically, a user-defined parameter specifies how
"far out" these boundaries are. If the boundaries are too close, the asymptotic conditions applied
there may not be accurate. The usual method of determining the size of the computational domain is
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to systematically increase the domain until the solution is no longer dependent on the size of the
domain that is compatible with the objectives of the computation. Consistency tests should be
considered as complementary to the other types of algorithm tests described in this section.

We believe that the primary responsibility for numerical algorithm verification should be
placed upon the code development team. Computational analysts who are not directly a part of this
team may conduct the algorithm testing, but we believe the code development team needs to have
in-depth knowledge of the algorithms used and their expected performance. This information
should be documented either as part of the code development process or during testing. The
documentation on algorithm testing may be combined with that for SQA testing, as discussed in
Section 2.3.3. It is important that analysts and code customers have access to this information.

2.3.3 Software Quality Assurance

Software quality analysis and testing, as highlighted in Fig. 8 presented previously, rests in
three techniques: static analysis, dynamic testing, and formal testing.[190] Static analysis
techniques analyze the form, structure, and consistency of the code without executing the code.
Examples of static analysis techniques are software reviews, complexity analysis, inspections,
audits, and analyses of data flows. Dynamic testing techniques involve execution of the code. The
results of executing the code are analyzed to detect coding errors or weaknesses in design that can
cause coding errors. Regression testing, which re-evaluates the accuracy of computed results, is
one example of a dynamic testing technique. Formal testing, also referred to as formal methods, is
directed toward rigorously demonstrating that the code exactly represents the underlying conceptual
model. Further remarks on static, dynamic, and formal testing are included below. Two
particularly useful books for readers who wish to acquaint themselves with the vast subject of SQA
testing are by Beizer[16] and by Kaner et al.[103] The differing viewpoints in these books add
interesting nuances to a subject as seemingly dry (to practitioners of computational physics) as
SQA testing. Beizer�s book is somewhat more formal in its approach, while Kaner and his
colleagues are less structured in their approaches and recommendations.

It is probably safe to claim that static analysis has traditionally been dominated by techniques
to detect compilation errors on the specific code of interest. One doesn�t tend to see published
studies of, say, applying architectural analysis, such as the complexity metrics used in Hatton�s
analysis,[81] to computational physics codes. We strongly advocate the expansion of static
analysis as part of verification assessment for computational physics codes. The complexity of
modern programming languages (C++ especially) and the use of massively parallel computing
platforms for computational physics increase the need for, and the impact of, static analysis.

When considering software testing, it is important to understand the distinction between
glass-box testing and black-box testing. Glass-box testing refers to testing when all of the source-
code of interest is available. Black-box testing refers to testing when only the code inputs and code
outputs are observable. Glass-box testing is practiced primarily by code developers because it
assumes sufficient knowledge of the design and architecture of the code to design, populate, and
assess test plans based on this knowledge. Glass-box testing (also called structural testing) is
heavily weighted to what we have called SQA testing, although that is not mandatory. When we
discuss static analysis, test problems generated by coverage analysis, and regression testing, we
will be discussing examples of glass-box testing. We note that the MMS, discussed in Section
2.3.2, is actually code invasive and thus related to glass-box testing. The MMS cannot be applied
exclusively in black-box mode because of the need for specific coding intervention for each test
that it creates, at least in the examples of which we are aware. Once that coding is accomplished,

- 27 -



however, the gathering of results proceeds in a fully black-box manner. There does not appear to
be any analog of the MMS testing methodology in the work of Beizer[16] and Kaner et al.,[103]
which is rather surprising.

Black-box testing (also called functional testing) is primarily the paradigm for the algorithm
testing discussed above. Black-box testing can be performed by anyone involved with a given
computational physics code, but it tends to be associated with independent testing entities.
Certainly in the computational physics world, much black-box testing is performed by users of the
code. (If a developer of the code is also a user, for purposes of this discussion we emphasize their
role as a user.) Black-box testing requires no detailed knowledge of the code software, although
such knowledge can certainly help. Even when those who designed the algorithms and
implemented the code execute a test problem to investigate the empirical performance of the code,
they are performing black-box testing. When a computational physics algorithm is described in a
publication, for example, and compared with some highly accurate solution, a black-box test has
been performed. The goal of the authors in this case is to assess the functionality and accuracy of
the output results, not to test specific software elements. When users test codes by running their
favorite test problems prior to application, they are performing black-box testing. Users are an
enormous resource for black-box testing. In our discussion of dynamic testing, aspects of
regression testing, and statistical testing, we are addressing issues that are particularly relevant to
black-box testing. The goal of a coordinated, optimal test strategy for a computational physics code
is to blend black-box testing and glass-box testing.

Coverage analysis and code sensitivity analysis are methods that can be used to assess the
complexity of the computational physics code in order to design collections of test problems.
Coverage analysis enables one to determine what components of the code enter into various
options exercised in the code. The relative importance of the selected component contributions to
that calculation is then determined via a sensitivity analysis. Ideally, one would start coverage
analysis with a tool of sufficient capability to assess code lines and units exercised by the code in
performing the desired calculation. For example, PureCoverage�[156] is a commercial tool that
detects lines of code executed during the operation of C++ software and reports this information in
a useful form. A major challenge of coverage analysis for algorithm testing is to understand
execution paths as well as lines touched in the code in order to execute the intended application
calculation. One then designs tests that specifically target these modules and paths. This is clearly a
glass-box-testing strategy and is discussed extensively in both Beizer[16] and Kaner et al.[103]
While a discussion of sensitivity analysis is beyond the scope of this paper, the topic is brought up
in the context of software quality testing in Ref. [133].

A natural partner of coverage analysis for software quality testing is regression testing. A
widely used commercial testing technique, regression testing is defined by Beizer[16] as �any
repetition of tests (usually after software or data change) intended to show that the software�s
behavior is unchanged except insofar as required by the change to the software or data.� What this
means in practice for computational physics is that a compendium of tests is assembled, a baseline
for code performance against these tests is established, and the tests are run periodically. When the
current performance is determined to have deviated from the baseline, either the decision is made
that a bug has been introduced or the regression test suite is baselined again. There are two
requirements that make this approach feasible. First and foremost, the test suite must run
sufficiently fast so that the testing can be performed frequently. Second, the regression testing
should be performed for every software modification. For multiple developers of a computational
physics code, for example, this means that no modified software is accepted before regression
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testing is performed. This, of course, can impede the software development process if not
managed properly.

Regression tests that are glass-box tests are often correlated with coverage analysis and
designed to provide testing of as many lines of code as possible. Systematic, cyclic-regression
testing, say once a suitable set of test problems has been defined, is known to be important in code
development and maintenance. Unfortunately, this requires a trade-off between available resources
that influences the fidelity of the testing. For example, a high-fidelity test suite that takes longer
than 5 to 10 hours to execute is probably not practical for execution every day. Thus, such a suite
cannot be used to demonstrate the stability of daily code builds.

The main use of regression testing is to minimize the effort devoted to fixing incorrect new
software that is introduced into existing code in a software development project. There is a balance
that must be determined between the effort devoted to regression testing and the effort devoted to
finding and fixing incorrect modifications of the existing code at a later date. At the same time,
regression testing aims to cover as much of the code as possible. In the computational physics
projects that we are familiar with, the anticipated coverage target for regression testing is typically
on the order of 80% of the lines of code. Accepting 80% line coverage is commonly based on the
developers willingness to define specific code elements as not requiring coverage. More
importantly, these coverage thresholds are established in the attempt to prevent the effort devoted to
regression testing from becoming larger than the effort required to fix introduced errors.

A great deal of effort has recently been devoted to the development and application of formal
methods.[21,150,169] However, the actual goal of these methods�rigorous �proof� that a system
of software is correctly implemented�remains controversial in our opinion. The application of
formal methods is also complicated by disputes over cost, appropriateness, utility, and impact.[20]
Formal methods have certainly not been applied to software systems like those of interest in
computational physics, namely, those systems in which floating-point arithmetic is dominant and
an effectively infinite variability in software applications is the norm. The utility of these methods
to computational physics codes, even if resource constraints were not issues, has not been
established. This fact has led to interest in the application of formal methods to more restricted
problems that still may be of significant interest in computational physics software. For example,
there is current interest in applying formal methods to aid in verification of the mathematical
formalism of the conceptual model that underlies a computational physics code rather than in the
full details of the software implementation.[34,114]

We conclude this section on SQA by providing a few brief remarks and references for some
of the key literature that is relevant to the overall problem of verification assessment. A number of
modern texts are available that describe current practice in the SQA field.[9,16,41,43,55,62,101,
122,153,165] Much of the research and development in SQA procedures has been fueled by
computer-controlled systems that require extremely reliable and secure software, as in Johnson�s
avionic-systems application referenced previously. Such systems are commonly referred to as
�high-integrity systems.� Examples of other high-integrity systems are control systems for nuclear
power reactors and software for nuclear-weapon security and safety. The scientific software
community has much to learn from SQA procedures that have been developed for these systems as
high-consequence scientific computing becomes more prevalent.

2.3.4 Numerical Error Estimation

The two basic approaches for estimating the error in a numerical solution to a PDE are a
priori and a posteriori approaches. An a priori approach uses only information about the
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numerical algorithm that approximates the partial differential operators and the given initial and
boundary conditions. A priori error estimation is a significant element of classical numerical
analysis for PDEs, especially those underlying the finite element and finite volume
methods.[64,92,93,115,129,146,161] An a posteriori approach uses all of the a priori
information, plus computational results from a previous numerical solution using the same
numerical algorithm on the same PDE and initial and boundary data. In this paper we also refer to
a posteriori error estimates as �empirical� data or, as Roache[161] call it,  �observed� data.
Empirical data could be, for example, a solution on a single coarse grid or a sequence of solutions
on consecutively finer grids. We believe the only quantitative assessment of numerical error that
can be achieved in practical cases of nonlinear PDEs is through a posteriori error estimates. As a
result, only a posteriori will be discussed here.

A posteriori error estimation has primarily been approached through the use of either
Richardson extrapolation[161] or estimation techniques based on finite element
approximations.[4,12] Richardson�s method can be applied to both finite difference methods and
finite element methods. As pointed out by Roache,[161] Richardson�s method produces different
estimates of error and uses different norms than the traditional a posteriori error methods used in
finite elements.[93,158] A Grid Convergence Index (GCI) based on Richardson�s extrapolation
has been developed to assist in the estimation of grid convergence error.[159-161] The GCI
converts error estimates that are obtained from any grid-refinement ratio into an equivalent grid-
doubling estimate. Recent studies have shown that the GCI method is fairly reliable, even for
solutions that are not in the asymptotic-convergence region.[24,28,59,166]

Richardson�s extrapolation can be applied to compute error estimates of dependent variables
at all grid points, as well as error estimates for solution functionals. Solution functionals are
integrated and differentiated quantities such as body lift and surface heat flux, respectively. Venditti
and Darmofal[188] discuss the coupling of error estimation and adaptive grid generation to reduce
numerical errors in such computed functionals. Their particular example is the quasi-one-
dimensional flow in a variable-area duct. It is important to emphasize that different dependent
variables and functionals converge at different rates as a function of grid size. For example, the
grid and time step that are required to show second-order convergence in heat flux on a body
surface are extremely finer than for total lift on a body. This fact was also pointed out by earlier
researchers,[99,161] as well as in the AIAA Guide.[3]

A posteriori error estimates are also important for finite element adaptivity, where both the
spatial grid density (h-adaptivity) and the order of the finite element scheme (p-adaptivity) can be
adapted. The important role of a posteriori estimates in adaptivity for finite elements is discussed
in many papers, as well as in the recent books by Ainsworth and Oden[4] and Babuska and
Strouboulis.[12] For numerical error estimation, however, finite element adaptivity is not the
issue. Although traditional a posteriori methods used in finite elements are very useful and
computationally efficient, these methods do not demonstrate asymptotic convergence or directly
address useful engineering error measures. Recent work in a posteriori error estimation addresses
error in local quantities of engineering interest, as well as error estimation for certain types of
nonlinearities in elliptic problems.[4,12] Regardless of the a posteriori error estimation approach
chosen, the estimation should always be made for the system response outputs that are relevant to
the application of interest.

The assumption of smoothness in solutions, i.e., no singularities and discontinuities, is
quite demanding in estimating local errors in the solution domain. Singularities and discontinuities
commonly occur in fluid dynamics, solid mechanics, and structural dynamics. The �pollution� of
particular regions of a calculation by the presence of singularities such as shock waves, geometrical
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singularities, or crack propagation is a subject of grave concern in error estimation. Often, the only
clear sense of this pollution available to us is through careful empirical assessment. Since the
technical aspects of this issue are beyond the scope of this paper, the reader should consult a series
of papers by Babuska and his colleagues[10,11,13] as well as the paper by Oden[145] for a
discussion of this problem from a finite-element point of view. Roache[161] has a wide-ranging
discussion of this topic, and the recent work of Zhang and his colleagues[196] discusses how the
presence of a shock wave structure affected a posteriori error estimates for the Euler equations. A
recent paper of Botella and Peyret[19] discusses similar problems associated with computing
singular solutions of the Navier-Stokes equations.

An additional numerical error estimation complexity should be mentioned that can occur in
certain types of computational physics simulations. This complexity can be conceptually described
as a coupling between numerical error and the appearance of new spatial and temporal scales in
certain types of physical models. In fluid dynamics, for example, when grids are sufficiently
refined then completely new processes or characteristics on the smaller spatial scales can develop.
It is not uncommon that a steady flow field can become unsteady as the grid is refined and very
small-scale phenomena can develop that did not exist on the coarser grids. This occurs in the case
of the trailing edge region of a compressor or turbine blade, where vortex shedding is known to
exist and will appear in the simulation if the grid around this region is sufficiently refined. Refining
grids does not ensure that the physics modeled will remain unchanged as the grid is resolved. This
observation directly influences the accuracy and reliability of any type of a posteriori error
estimation method, especially extrapolation methods.

Extracting an estimate of numerical accuracy on underresolved grids is a topic of current
research. We previously mentioned one aspect of the problem, generically referred to as pollution
error�the propagation of discretization error from less accurately resolved regions of a calculation
into more accurately resolved regions. Another issue is simply to understand what information can
rationally be synthesized from calculations with more- or less-known resolution accuracy. Though
this topic is beyond the scope of this paper, Chorin[31-33] and Glimm[70,73] demonstrate that
techniques for understanding the numerical accuracy of underresolved calculations are challenging
and specialized. A critical theme in this literature, and one that might be generalized to other
important problems, is the role of statistical estimation in performing such assessment. We
conclude by commenting that studying V&V for underresolved calculations directly addresses the
challenges posed by Gustafson in his 1998 paper.[75]

2.4 Validation Activities

2.4.1 Fundamentals of Validation

We have emphasized that validation experiments must be designed purposefully with specific
goals linked to application objectives and to specific elements of the PIRT. The primary goal of
directed validation experiments is to ensure that experimental data are sufficiently related to the
application driver to provide stringent confidence assessment when code calculations are compared
with these data. These data must be precisely located within the structure of the application-specific
PIRT and must be unambiguous in defining confidence in the application of the code to the
phenomena exemplified in the experiment. Because this task must be accomplished by
quantitatively comparing code calculations with experimental data, important requirements are
placed on validation experiments to create the greatest opportunities for performing these
comparisons. It is critically important to design and execute validation experiments that allow
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precise and conclusive comparisons of calculations with experimental data for the purpose of
assessing code fidelity and credibility. In Section 2.4.5 we further discuss code-experiment
comparisons. It will hopefully be made clear that the design and execution of experiments must
allow us to quantify meaningful and useful metrics.

Particular validation experiments may achieve these goals to a greater or lesser degree, but
any such attempt rests on a foundation of rational design concepts that are based on the needs of
the application of the code. The more purposefully we design an experimental validation activity,
the greater the probability that we can optimize the results of that activity in the face of these
complex constraints. It is imperative that validation experiments balance resource constraints,
including time, level of effort, available expertise, and desired fidelity. The approach for achieving
this balance should be defined in the experimental plan. How to achieve this balance will depend
strongly on which tier of physics complexity the experiment is conducted. As briefly mentioned in
Section 1.2, validation experiments can be conducted at the unit-problem, benchmark, subsystem,
or system tier. The resources needed vary greatly from one tier to the next. Section 2.4.2 discusses
some of these topics in more detail.

The experimental, computational, and comparison activities should expedite the credibility
assessment of computational models for system applications that are within the application domain.
It is important to attempt to quantify the boundary separating the region of acceptability of the
model from the region where the model is not acceptable for the application. Designing
experiments that test a code in regions where the code is believed to be insufficiently accurate for
the intended application helps locate this boundary and provides a means for quantitatively
assessing the degree of the expected inaccuracy. Because such experiments are performed
purposefully rather than accidentally, these experiments also further test our grasp of the
conceptual models underlying the code that are probed by the validation experiments. Obviously,
this goal only makes sense when experiments that probe code inaccuracy lie close enough to the
boundary of applicability to be relevant. It is desirable to have experimental validation tasks that
have the explicit goal of defining those application domains where use of the code is questionably
adequate to better quantify the boundary of applicability of the code. To perform these validation
tasks in a conscious and scientifically directed manner is not necessarily any easier than to achieve
desirable levels of confidence in other application domains.

Figure 9 illustrate a typical relationship between the application domain and the validation
domain, i.e., the apparent region of acceptable computational capability. These domains are
defined in a multidimensional parameter space where only two of these dimensions, X1 and X2 are
shown. Two kinds of points are also shown. An �A� denotes a location in the application domain
where a specific application of a code has previously been performed; a �V� denotes a location in
the domain where validation has been performed. The boundary of the validation domain
represents the apparent limit where the physical models in the code would no longer be reliable.
The boundary of the validation domain could be estimated, for example, by using alternate
plausible computational models or by using expert opinion. We draw the reader�s attention to two
pairs of intended applications, each pair denoted �AI� and �AO�. The applications �AI� each lie
inside of the validation domain, while the applications �AO� each lie outside of the apparent
validation domain. Our point is that it is essentially as important to know that the code is
questionable for the applications �AO� as it is to know that the code is acceptable for the
applications �AI�. A complete validation effort could quantify this situation, but such an effort is
commonly not possible, for example, because of programmatic schedules, budgets, safety and
environmental concerns, or international treaties.
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Typical Relationship Between the Application Domain and the Validation Domain

(from Ref. [185])

There should be a well-reasoned basis for choosing between two potential validation
experiments. The basis should depend on the potential benefits of defining the acceptable domain
boundary and on the use of available time and resources. The code-application V&V plan should
be helpful in choosing between the two potential experiments, especially through utilization of
PIRT prioritizations. In partnership with the PIRT, two approaches are recommended: competing
alternate plausible models and statistical experimental designs. Competing alternate plausible
models can be of two different types: alternate models that are generally at the same level of
modeling fidelity, and hierarchical models. Using hierarchical models, one formulates conceptual
models that are clearly at different levels of fidelity or physical detail. Then results from the models
at different levels of complexity are compared to attempt to assess where the lower fidelity model
could begin to fail. Statistical experimental design (for example, see Cox[39] and Dean and
Voss[42]) is an attractive basis for attacking the resource optimization problem for experiments
with a focus on uncertainty quantification. Gunter[74] has argued in favor of using statistical
experimental design in planning physical-science experiments. The specifics of how the statistical
design of experiments may be applied in particular validation activities are dependent upon the
subject-matter focus of these experiments.

2.4.2 Construction of Validation Experiment Hierarchy

Any appropriate methodology for the purposeful definition, design, and analysis of
experiments for validation of a code must consider the intended application. As discussed in
Section 2.2, the PIRT is the key methodology for identifying the predictive-capability needs and
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setting the validation priorities. To implement the needs and priorities identified in the PIRT, the
recommended methodology is the use of a validation hierarchy, as discussed in Section 1.2. The
hierarchical view of validation is distinctly an engineering perspective, as opposed to a scientific or
model-building perspective. The purpose of the validation hierarchy is to help identify a range of
experiments, possible separation of coupled physics, and levels of complexity�all of which are
related to an engineering system�so that computer codes from different disciplines can be
evaluated. Stated differently, the validation hierarchy must be application driven to be of
engineering value, not code driven.

As one constructs each lower tier of the hierarchy, the emphasis moves from multiple
coupled-physics codes to single codes (or single-physics options in multi-physics codes)
simulating a particular type of physics. In parallel with the simplification process, the focus on the
actual operating conditions of the complete system should not be lost. Constructing these
hierarchical tiers and identifying the types of experiments that should be conducted at each tier are
formidable challenges. There are many ways of constructing the tiers; no single construction is best
for all cases. We would draw the analogy of constructing validation hierarchies to the construction
of control volumes in fluid-dynamic analyses. Many varieties of control volumes can be drawn;
some lead nowhere, and some are very useful for the task at hand. The construction should
emphasize the modeling and simulation capability that is desired to be validated, whether that
capability be computational physics or other computational disciplines. Analogous tier structures
can be developed for structural dynamics and electrodynamics, for example, when the engineering
system of interest involves these disciplines.

A good hierarchical tier construction is one that accomplishes two tasks. First, the
construction carefully disassembles the complete system into tiers in which each lower-level tier
has one less level of physical complexity. For complex engineered systems, this may require more
than the three building-block tiers shown in Fig. 2, presented previously. The types of physical
complexity that could be uncoupled from one tier to the next are spatial dimensionality, temporal
nature, geometric complexity, and physical-process coupling. The most important type of physical
complexity is physical-process coupling, which commonly contains the highest nonlinearity of the
various contributors. The nonlinear coupling is, of course, eliminated by conducting experiments
with uncoupled and separate physical effects, e.g., separating turbulence and combustion. It is
important to recognize the potential nonlinear nature of all of the contributors in the construction of
the tiers because the philosophy of the tier construction rests heavily on linear-system thinking.
That is, the belief that confidence in the computational capability for the complete system can be
built from an assessment of the computational capability of each of its parts. The complete systems
of interest clearly do not have to be linear, but the philosophy of the hierarchical validation
approach loses some of its utility and strength for strong nonlinear coupling from one tier to the
next.

The second task accomplished by a good hierarchical tier construction is the selection of
individual experiments in a tier that are practically attainable and able to produce validation-quality
data. In other words, the individual experiments should be physically achievable given the
experimental test facilities, budget, and schedule, and they should be capable of producing
quantitative experimental measurements of multiple system-response measures that can test the
code. For complex systems, the ability to conduct a true validation experiment at the complete
system tier is extremely difficult, if not impossible. At the subsystem tier, it is usually feasible to
conduct validation experiments, but it is still quite difficult and expensive. One usually chooses a
single hardware subsystem or group of subsystems that are closely related in terms of physical
processes or functionality. For complex subsystems, one might want to add a new tier called
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�components� below the subsystem tier. As with the subsystem tier, the components tier would
consist of actual operational hardware components. When one defines the individual experiments at
the benchmark-tier level, special hardware should be fabricated. By �special hardware� we mean
that the hardware need not be constructed to perform its system tier or subsystem tier functions.

The benchmark tier is probably the most difficult to construct because it represents the
transition from a hardware focus in the two top tiers to a physics-based focus in the bottom tiers of
the hierarchy. At the bottom tier, unit problems, one should identify simple geometry experiments
that have a single element of physical-process complexity. As with the subsystem tier, an
additional tier may need to be added to attain only one element of physics at the bottom tier. Also,
the experiment must be highly quantitatively characterized so that it can provide the necessary data
to the computational code, and the experiment must be conducted so that experimental uncertainty
can be estimated precisely. High-quality validation experiments are practically attainable at the
benchmark and unit-problem tiers, but usually not at the system or subsystem tiers for complex
systems.

Recently, an example of a hierarchical tier structure for a complex, multidisciplinary system
was presented in Ref. [142]. The example features an air-launched, air-breathing, hypersonic
cruise missile. The missile is referred to as the complete system, and the following are referred to
as systems: propulsion, airframe, guidance, navigation, and control (GNC), and warhead. The
example assumes that the missile has an autonomous GNC system, an on-board optical target
seeker, and a warhead. Figure 10 shows the system-level hierarchical validation structure for the
hypersonic cruise missile. The structure shown is not unique, nor is it necessarily optimum for
every computational-simulation perspective of the missile system. In addition, the structure shown
in Fig. 10 focuses on the airframe system and the aero/thermal protection subsystem for the
purpose of analyzing the aero/thermal performance of the missile.

To better demonstrate how the validation hierarchy of the aero/thermal protection subsystem
is related to the validation hierarchy of the propulsion, GNC, and warhead systems, the example
was discussed further in Ref. [142]. Figure 11 shows how the validation hierarchy of each of
these four systems could be viewed as the primary facets of a four-sided pyramid. The airframe
facet was divided into three additional facets, each representing the three subsystems: aero/thermal
protection, structural, and electrodynamics. The propulsion system was divided into four
additional facets to represent its subsystems: compressor, combustor, turbine, and thermal
signature. Similarly, the GNC and the warhead systems could be divided into subsystems
appropriate to each. On the surface of this multifaceted pyramid, one can more clearly and easily
indicate the coupling from one facet to another. For example, we discussed the coupling of laminar
and hypersonic flow with ablation to the optical seeker of the GNC system. This coupling would
be shown by an arrow connecting these hypersonic flow elements to appropriate elements on the
GNC facet of the pyramid. (Suggested references stressing a systems engineering perspective are
Refs. [18,76,117,139,195].)
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The validation pyramid stresses the systems-engineering viewpoint in modeling and
simulation�based design, as opposed to the viewpoint of a specific discipline. Each facet of the
pyramid can then be devoted to identifying validation experiments for each computational code
responsible for part of the design of the system. As one traverses around the top of the pyramid,
the number of facets is equal to the number of systems that are identified. As one traverses around
the bottom of the pyramid, the number of facets is equal to the total number of major computer
codes used in the analysis of the engineering system, i.e., the number of codes that require
validation activities for the intended application. For the example of the hypersonic cruise missile,
if the code that simulates surface ablation is a separate code from the aerodynamics code, then an
additional facet on the pyramid is added on the aero/thermal subsystem facet. We strongly believe
this type of system-level thinking is necessary to increase confidence in complex systems that are
designed, manufactured, and deployed with reduced levels of testing.

2.4.3 Characteristics of Validation Experiments

Many researchers, analysts, and managers ask, What is a validation experiment? or how is a
validation experiment different from other experiments? These are appropriate questions. We
suggest that traditional experiments could generally be grouped into three categories. The first
category comprises experiments that are conducted primarily to improve the fundamental
understanding of some physical process. Sometimes these are referred to as physical-discovery
experiments. The second category of traditional experiments consists of those conducted primarily
for constructing or improving mathematical models of fairly well-understood flows. The third
category of traditional experiments includes those that determine or improve the reliability,
performance, or safety of components, subsystems, or complete systems. These experiments are
commonly called �tests� of engineered components or systems.

We argue that validation experiments constitute a new type of experiment. A validation
experiment is conducted for the primary purpose of determining the validity, or predictive
accuracy, of a computational modeling and simulation capability. In other words, a validation
experiment is designed, executed, and analyzed for the purpose of quantitatively determining the
ability of a mathematical model and its embodiment in a computer code to simulate a well-
characterized physical process. Thus, in a validation experiment �the code is the customer� or, if
you like, �the computational analyst is the customer.� And only during the last 10 to 20 years has
computational simulation matured to the point where it could even be considered as a customer. As
modern technology increasingly moves toward engineering systems that are designed, and
possibly even fielded, based on modeling and simulation, then modeling and simulation itself will
increasingly become the customer of experiments.

In our view, there are three aspects that should be used to optimize the effectiveness and
value of validation experiments. The first aspect is to define the expected results of the
experimental validation activity using the code itself. The second aspect is to design specific
validation experiments by using the code in a predictive sense. The third aspect is to develop a
well-thought-out plan for analyzing the computational and experimental results. These aspects
emphasize tight coupling of the subject code to the experimental activity and ensure we are in the
best position to learn from the comparison of computational and experimental results, regardless of
whether these comparisons are good or bad, as explained below.

Consider the second aspect above related to the design of a validation experiment. Suppose
through a series of exploratory calculations for a particular application of the code that an
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unexpectedly high sensitivity to certain physical parameters appears. Specific PIRT elements for
the application may have postulated little sensitivity to the parameters, or the PIRT may have stated
that the sensitivity was unknown. If this unexpected sensitivity has an important impact on the
application of interest, a validation experiment assessing the correctness of this sensitivity should
be pursued. The code that is the object of the validation exercise should participate in defining the
principles and goals of a planned validation experiment. An alternative phrase to keep in mind
when the word �define� appears is �define the purpose of the experiment.� The role of the code in
the definition of validation experiments may be purely exploratory until some progress has been
made on validation activities.

One way of designing a validation experiment is to use the code calculations as specific
guidance on where to locate the instrumentation and what kind of data to acquire for assessing the
anticipated sensitivity. In the proposed validation experiments, �design� means specifying to the
greatest degree possible the initial and boundary conditions, material properties, diagnostic
locations and characteristics (Strain gauge? Stress gauge?), and data fidelity. The probability that
these conditions �defined� through code calculations will be met precisely in any complex
validation experiment is probably zero, but the probability that they will be met in simpler
experiments is relatively high. In most cases, the success of a validation experiment will often be
determined by the degree to which the experiment matches these specifications. Deviations can be
acceptable�but if the intent of the experiment was to measure x at location y for material z and
geometry g and in all cases the experiment is significantly different from most or all of these
factors, it is unlikely that the experiment would be a successful validation experiment.

Engaging a code in the definition and design of validation experiments can easily be
distinguished from more common experimental practice. In the conventional case of nonvalidation
experiments, the experimenters state the following to the computational analyst in the typical
approach: �We are performing the following experiment. Tell us what the expected response of
gauge a will be, given this experimental design and location for the gauge.� For a validation
experiment, on the other hand, the computational analyst makes the following statement to the
experimenter: �Please perform the following experiment. We recommend locating gauge a at
location x based on our computational predictions. It will be very useful to see whether our
predictions agree with your experiment. If your experiment has deviated from our requested
design, we still anticipate achieving useful validation consequences through further
postexperimental analysis, as long as the design deviation is not great.�

A number of researchers, particularly experimentalists, have slowly been developing the
concepts of a validation experiment. During the past several years, a group of researchers at Sandia
National Laboratories has been developing philosophical guidelines and procedures for designing
and conducting a validation experiment. Although the following six guidelines and procedures
were developed in a joint computational and experimental program conducted in a wind tunnel,
they apply over the entire range of computational physics:[1,2,135-138,189]

Guideline 1: A validation experiment should be jointly designed by experimentalists, model
developers, code developers, and code users working closely together throughout the
program, from inception to documentation, with complete candor about the strengths and
weaknesses of each approach.

Guideline 2: A validation experiment should be designed to capture the essential physics of
interest, including all relevant physical modeling data and initial and boundary conditions
required by the code.
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Guideline 3: A validation experiment should strive to emphasize the inherent synergism
between computational and experimental approaches.

Guideline 4: Although the experimental design should be developed cooperatively,
independence must be maintained in obtaining both the computational and experimental
results.

Guideline 5: A hierarchy of experimental measurements of increasing computational
difficulty and specificity should be made, for example, from globally integrated quantities
to local measurements.

Guideline 6: The experimental design should be constructed to analyze and estimate the
components of random (precision) and bias (systematic) experimental errors.

Validation experiments should not produce data that fundamentally depend on code
calculations for critical data-reduction tasks. Such data do not correctly address our need for
independent comparability of experimental data with calculations and violate our need for
robustness of the experimental data. Experimental data that require code calculations for evaluation
can never be a desirable outcome for a validation experiment, although exactly this problem may
arise in other kinds of experiments. An example of what we mean is the problem of inference of
material temperature from experimentally acquired shock hydrodynamic data (density, pressure,
and velocity fields) using code calculations of shock-wave physics rather than some type of
diagnostic to directly measure the temperature. The only possible validation data that will emerge
from shock hydrodynamics experiments without temperature diagnostics are the shock
hydrodynamic data. This problem is relevant, since it arises in investigations of temperature
dependence in high-pressure shock-driven material response. Such experiments often need code
calculations to estimate the associated thermal conditions under shock loading. For purposes of
scientific discovery, this is permissible though speculative. Such experiments, however, cannot be
claimed to provide validation data for the high-pressure thermomechanical response of the material
because of the lack of independence of calculations and experiment.

The purposeful design of validation experiments is enabled and accomplished through a
diverse team of people that participate in the experimental validation activity. Most obviously, one
or more experimenters are participants in this team. However, code users (analysts, designers)
must also participate, given our proposed primary role of the code in the definition, design, and
analysis of validation experiments. Finally, one or more code developers should be on the
validation experiment team. Their presence provides valuable expert knowledge about the
perceived a priori capability of the code in all three aspects of experimental validation: define,
design, and analyze. In fact, code developers, including experts in the physical models in the code,
are the most knowledgeable about the boundary of the acceptable application domain discussed in
Fig. 9.

Attempting to sharply define the boundary of applicability of the code for a given application
domain through a deliberate choice of experiments close to the boundary, but on the invalid side,
has greater leverage when code predictions are used to design such experiments. We stress once
again that achieving a satisfactory level of performance for the code in comparison with validation
experimental data in a case of true prediction has far greater power to raise our level of confidence
in the application of the code. We may not be able to quantitatively measure this fundamental
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observation at this time, but it is obviously true. Predictive accuracy is gold, while posttest
consistency is merely brass at best and possibly fool�s gold at worst.

2.4.4 Uncertainty Quantification in Computations

As mentioned in Section 2.4.1, it is common when simulating validation experiments that
one encounters physical parameters, e.g., in the PDEs or in the initial or boundary conditions, that
are not precisely known or measured for an experiment. This situation is much more common at
the system and subsystem tiers than at the benchmark and unit-problem tiers. Examples of such
parameters are thermochemical transport properties, flow rates in complex systems, and inflow
nonuniformities. Another common situation occurs during a series of experiments, e.g., weather-
driven experiments and flight tests, when there are certain parameters that are poorly controlled or
not controllable at all. For any parameter, we make the assumption that a value of that parameter is
required to perform the computational simulation. The situations just mentioned are all
characterized by stochastic parametric uncertainty. In the following discussion, we simply refer to
�uncertainty,� but we will always be referring to parametric uncertainty. This type of uncertainty
requires nondeterministic simulations in validation of computational physics.

One standard approach is to estimate, by one means or another, a single value of such a
parameter and compute a solution with that selected value. This might be a fully adequate way of
dealing with this uncertainty, especially if experience suggests that the range of potential parameter
values is very small and that the calculation is known not to be extremely sensitive to the parameter
in question. The resulting calculation intrinsically is interpreted as �representative,� or �best
estimate� or �conditional� for that parameter.

The shortcomings with the standard approach referred to above begin to be noticeable when
the range of variation of the parameter is large or when the calculation is known to be sensitive to
the parameter values. If multiple required parameters in a computation of a validation experiment
are uncertain, it is entirely possible that the interaction of these parameters in the calculation may
magnify the influence of their uncertainty on the final results of the calculation. In our opinion, this
statement is especially important when performing calculations that are intended for direct
quantitative comparison with validation experiments. We believe that the uncertainty of the
parameters should be incorporated directly into the computational analysis.

The simplest strategy for incorporating uncertainty of this kind directly into the computation
is performed in three steps. The first step, called characterizing the source of uncertainty, is based
on the assumption that the uncertainty in the parameters of interest is characterized by probability
distributions. Sometimes such distributions can be directly estimated if a large quantity of
experimental data is available for the parameters. Sometimes such distributions simply must be
assumed. At any rate, the first step involves specifying the probability distributions and
understanding the credibility of these assumptions.

In the second step, ensemble computing, values from the input probability distributions
specified in the previous step are selected using statistical sampling procedures, such as Monte
Carlo or Latin Hypercube sampling methods (see, for example, Refs. [40,67]). These sampled
values are then used in a set of computations. Because this latter statement is so important, we will
restate it. The assumed prior probability distributions for the uncertain parameters are used to
generate a set of calculations. This set is sometimes called an ensemble of calculations.

The key issue is that a single calculation is no longer sufficient; a set of calculations must be
performed. Obviously, this need is disturbing�where once one might have performed a single
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calculation, now one must perform a potentially large number of calculations. We have not raised
nor answered the question of whether sufficient computational resources are available to execute
more than the one calculation. However, the constraints enforced by the availability of computing
may be formidable.

After the set of calculations has been generated, the third step, uncertainty quantification of
the output, is performed. This step involves analysis of the set of calculations, typically using
statistical inference, to estimate a probability distribution for the output variables of interest that
results from the given input parameter distributions. In general, we cannot deduce the exact output
distribution that results from the assumed form of the parameter distributions used to generate the
computational input associated with those parameters. Instead, the common practice is to use
statistical procedures to determine estimates of important parameters associated with that output
distribution.

Such statistically determined estimates are useful for comparing computational results with
experimental measurements. For example, the mean of the output calculations provides us with an
estimate of the expected value of the output quantity of interest, given the uncertainty structure
specified by the input distributions. This mean-value estimate is of primary importance when
comparing computational results with the mean value of multiple experimental realizations. Another
statistic of interest is the estimated variance of the output distribution, which can be interpreted as a
measure of computational output uncertainty, or scatter, given the input uncertainty.

For readers unfamiliar with this methodology, we stress that it is rarely true that the mean of
the output given the input uncertainty can be determined by performing a calculation for a single set
of inputs that is chosen to be the mean of each of the input distributions. Stated in another way, the
mean value of the output cannot be computed by performing a simulation using the mean value of
all input parameters except when the mapping of inputs to outputs is linear in the parameters.
Linearity in the parameters essentially never occurs when the mapping of inputs to outputs is given
by a differential equation: even a linear differential equation. Instead, we must perform the
ensemble of calculations to develop a statistically rational estimator for the mean. The previous
statement is also true for estimating other output statistics. Kleijnen[105] provides a broad
summary of methodologies that go beyond Monte Carlo for assessing output distributions
statistically.

In summary, the general methodology we are thus advocating for incorporating parameter
uncertainty into computational physics computations is to execute all three steps in the manner
suggested above. Performing the three-step strategy will clearly be nontrivial for hard
computational problems simply because of the computational burden imposed. There are also
certain subtleties that we have failed to mention, such as whether complex structure in the resulting
output probability distribution can actually be discovered using such a crude approach. We simply
state that extracting an intricate output-distribution structure will require either a large number of
sample input values or considerably more sophisticated approaches for performing the
methodology. The only modeling and simulation applications we are aware of within
computational physics that pursue this methodology are the fields of underground transport of
toxic waste materials, or pollutants,[15,83,85,120,183] and climatology.[5,30,53,77,149,171]

We now return to our mention of Bayesian inference. In step 2 of the three-step strategy, the
problem of propagating input uncertainty through a computational model to understand the
resultant output as described above is sometimes referred to as the forward uncertainty problem.
There is an associated inverse uncertainty problem, or backward problem, which is conceptually
and mathematically much more difficult.[72] The backward problem asks whether we can reduce
the output uncertainty by updating the statistical model using comparisons between computational
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and experimental results. The inverse uncertainty problem is a calibration problem, except in the
inverse uncertainty problem the parameters being calibrated are given by probability distributions.
For example, might we be able to improve our original prior distributions that characterize the
parameter uncertainty? This problem can be cast as a problem in Bayesian statistical inference. (See
Refs. [56,66,69] for an introduction to Bayesian inference.)

Part of the difficulty alluded to above is related to providing a better understanding of
computational accuracy when it is known that we are in an underresolved grid or time-step
situation. This is an important research topic because of its practical consequences. Recent work
attacks this problem and illustrates the formidable difficulties in two distinctly different areas: fluid
dynamics.[46,70] and dynamical systems[31-33] While the applications and specific technical
attacks of researchers in these two areas are distinctly different, we find it fascinating that a
common deep thread in their work is the treatment of insufficient information using statistical
methods. We should stress, however, that these authors do not discuss one problem of interest to
us�the problem of validation of underresolved computational models. If reliable estimates of error
due to underresolved grids can be made, then we believe model validation can be conducted. The
disadvantage, however, is that if large error bounds are estimated, there can be a great deal of room
for the computational results to agree or disagree with the experimental data. Stated differently,
only weak validation conclusions can be drawn if either the computational or experimental error
estimates are large. If no estimate of grid convergence error can be made for the computational
solution, we strongly believe no validation conclusion can be made. The same argument can be
made if only one experimental measurement is made. However, it is traditional in engineering and
science that relying on only one experimental measurement is more acceptable than not estimating
grid convergence error, regardless of whether or not this position is actually defensible. The issue
of how experimental uncertainty should be treated in validation is addressed in Section 2.4.5.

2.4.5 Validation Metrics

The specification and use of validation metrics comprises the most important practice in
validation activities. Validation metrics are used to quantitatively compare the results of code
calculations with the results of validation experiments. The straightforward interpretation of this
word is that a �metric� is simply a �measure.� Thus, the choice of one or more metrics defines the
means used to measure the differences between computational results and experimental data.
Because we emphasize that the overarching goal of validation experiments is to develop sufficient
confidence so that the code can be used for its intended application, we do not view the use of
metrics as simply a passive means of measuring differences between computational results and
experimental data. Metrics must be devised that actively resolve assessment of confidence for
relevant system response measures for the intended application of the code. Referring back to Fig.
5, it is clear that validation metrics are important for situations portrayed in Figs. 5a and 5b, but
they are crucial for quantitatively estimating confidence in modeling and simulation capability for
Fig. 5c. The definition, design and application of these metrics should directly flow from the PIRT
activities described in Section 2.2.

A metric should quantify both errors and uncertainties in the comparison of computational
results and experimental data. Specific examples of using metrics can be found in a number of
references.[37,51,52,57,58,68,78,90,91,106,116,118,119,142,147,148,184,187] Although
there is a large amount of recent work in this topic, it is our view that this area of validation
quantification techniques is in its infancy, despite it great importance.

Figure 12 helps to clarify where we believe the present state of the art is in computational-
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experimental comparisons and to identify the direction in which we believe the topic needs to
progress. This figure illustrates the conceptual increase of quantification in performing validation
comparisons as increased attention is paid to both experimental and computational uncertainty, as
well as numerical error. The figure depicts a desirable progression from (a) qualitative comparisons
in which experimental data and calculations are presented side by side on a viewgraph without any
information about uncertainties in either one, to (f) analysis of quantitative differences between
experiments and calculations accounting for uncertainty and error. Let us consider this figure in
some detail.
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Figure 12
Increasing Quality of Validation Metrics

(adapted from Ref. [185])

Figure 12a depicts a qualitative comparison we refer to as a �viewgraph-norm� comparison
of experimental and computational data that is often seen in practice. This comparison is marked by
the qualitative nature of the chosen metric, typically comparison of color contours over a domain. It
is also distinguished by no information on experimental and computational uncertainty. No
quantitative statement about validation can seriously be made based on such a comparison,
although the statement may provide some level of confidence in the application of the code at an
intuitive level. Intuition and degree of agreement between computational results and experimental
data, of course, is in the eyes of the beholder.

The plot in Fig. 12b portrays the most common type of comparison between computational
results and experimental data. Generic axis labels of system �input� and �response� are shown,
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although both axes can also be system response quantities over a range of an input quantity. While
discrete experimental and computational points are shown in this plot, the concept also
encompasses curve overlays without any points shown. The key problem with metrics
implemented at the level of Figure 12b is that there is no recognition of uncertainty in the
comparison. Yet, conclusions drawn from this type of comparison are really only qualitative, such
as, �fair agreement� or �generally good agreement.�

Figure 12c suggests that the next step for improving the method of comparison is to place
qualitatively estimated error bars around the experimental data. By �qualitatively estimated error
bars� we mean the common practice of the experimentalist either (a) quoting the manufactures
stated accuracy of the diagnostic sensor, or (b) making a statement such as �Essentially all of the
experimental data fell within the error bars shown.� At this stage of comparison a validation metric
could be constructed that accounts for two characteristics: the difference between the computation
and experiment integrated over the range of the input parameter, and some estimate of the
experimental uncertainty.

Figure 12d represents the case where there is a more quantitative estimate of experimental
uncertainty and there is an estimate of computational error. The information concerning
experimental uncertainty could be improved, for example, in two ways. First, multiple
experimental realizations could have been obtained so that the experimental data point shown
would represent the mean of all of the samples, and the error bar would represent two standard
deviations of an assumed Gaussian probability distribution. Second, an estimate of the
experimental uncertainty in the measured input quantity is also obtained and is shown as an error
bar. Concerning the computational error, an a posteriori numerical error estimate from the
computation would be given for the specific system response quantity that was measured. The
computational error estimate may have come from, for example, a single-grid solution or an
estimate based on solutions from multiple grids.

Figure 12e suggests a further improvement in estimation of experimental uncertainty and also
computation of nondeterministic simulations. For example, the experimental uncertainty could
include an estimate of correlated bias errors using the procedure discussed earlier, or an estimate of
uncertainty based on the same experiment conducted at separate facilities. Concerning the
nondeterministic computational simulations, we are referring to an ensemble of computations at
each of the experimental conditions, as discussed earlier. For example, multiple computations
would be made using the experimentally estimated probability distribution for the input quantity.
As a result, the computational data point would be the mean of the nondeterministic computations
for both the input and the system response. The �error bars� for the input quantity and the system
response would represent two standard deviations for each of the computational probability
distributions. Note that to use the experimental uncertainty distributions for the input quantity,
computations would need to be made at the measured input conditions.

Figure 12f shows a true quantitative measure of the comparison between the computations
and the experimental measurements over the range of the input quantity. In terms of information
content, one could have the same data as contained in Fig. 12e. However, we believe a validation
metric should be based on the difference between computations and experiments over the range of
measurements of the input parameter. Assuming that probability distributions for both
computational and experimental data are known, as discussed in Fig. 12e, comparing computations
and experiments will require a difference, or more properly, a convolution of pairs of probability
distributions. (See, for example, Refs. [23,44] concerning convolutions of distributions.) The
elliptical symbols in Fig. 12f are meant to signify one and two standard deviation contours of the
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convolutions of the computational and experimental probability distributions. The �dot� in the
center of each contour is the difference in the mean, or expected value, of the computational and
experimental distributions.

As proposed in Refs. [142,144] we believe that all reasonable validation metrics should
include a number of useful properties, although validation metrics need not be restricted to
satisfying only these properties. The following is a list of properties that we believe a validation
metric should have:

1) A metric should incorporate an estimate of the numerical error in the computational
simulation. This estimate may only be an estimate from solutions on underresolved grids.
However, we believe that representing the uncertain estimate of error as a probability,
e.g., 1 out of 100 chance, is not defensible, since convergence of numerical error is more
closely analogous to bias errors in experimental measurements.

2) A metric should not exclude any modeling assumptions or approximations used in the
computation of the simulation result. A metric should reflect all uncertainties and errors
incurred in the modeling process.

3) A metric should incorporate estimates of the random errors in the experimental data that are
the basis of comparison. In addition, we believe a metric should also include an estimate of
the correlated bias errors in the experimental data, if possible.

4) A metric should depend on the number of experimental replications of a given measurement
quantity. That is, a metric should reflect the level of confidence in the experimental mean
that has been estimated, not just the variance or scatter in the data.

5) A metric should be able to incorporate computational uncertainty that is due to both random
uncertainty in experimental parameters required for defining the calculations and any
uncertainty that is due to lack of experimental measurement of needed computational
quantities. Thus, a metric should use nondeterministic methods to propagate uncertainty
through the subject computational model.

The importance of quantifying the experimental uncertainty has been emphasized in the
discussion of experimental design above. Quantifying experimental uncertainty is crucial for
validation metrics. The inference from validation experiments to the application domain as
discussed in Section 2.1 is greatly weakened in the absence of quantifying the experimental
uncertainty. Similarly, it is critically important to estimate numerical errors in the computational
simulation that are compared with the experimental results. Otherwise, in computational-
experimental comparisons, the numerical errors can be indistinguishable from the modeling
uncertainties.

It is also important to properly represent the uncertainty observed in the experiment. For
example, observed experimental variations can be propagated through ensembles of calculations
using techniques for propagating uncertainty, and the computational results can then be analyzed to
provide statistical data about the resulting computational uncertainty. In practice, however,
difficulties arise for several reasons. First, the raw effort involved in obtaining ensembles of
calculations to propagate uncertainty becomes highly taxing for complex computations. Second, it
is very difficult to accurately assemble the experimental uncertainty data into precise statistical
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information for the routine propagation of computational uncertainty. The inability to accurately
characterize experimental uncertainty as probability distributions may be due to, for example,
inadequate diagnostic information on physical parameters or to limited time and financial resources.
When information is lacking, referred to previously as epistemic uncertainty, some of the newer
methods in information theory could be used. However, these methods are not well developed for
practical engineering problems. Even with these difficulties, we believe the definition and use of
validation metrics can still proceed even if information about computational uncertainty is lacking
or poor. In effect, when a poor job is done in quantifying the computational uncertainty, the quality
of the conclusions that can be drawn from the validation metrics is adversely affected. However,
when a poor job is done in quantifying the experimental uncertainty, the goal of the validation
experiment can be defeated.

Comparing an ensemble of calculations with an ensemble of experimental data is a statistical
problem of quantifying uncertainty. Statistical analysis of the differences between computational
and experimental results must play a key role in the analysis and presentation of metric data. A
fundamental goal of a validation metric is then to present at least the impact of the uncertainty of the
experimental data upon the inferences that are drawn from the validation exercise. It is important to
recognize that uncertainty in the experimental data (and of the computations) affects the credibility
of the results of a validation metric. This fact, in turn, will impact the confidence in the proposed
application domain of the code.

3. Major Research Issues

3.1 Prioritization of assessment activities

In this section we advocate widespread use and further research into the use of the PIRT for
prioritizing V&V activities and explain our reasons for doing so. The use of the PIRT for this
purpose is fairly well developed in the field of reactor-safety risk assessment; however, its use in
other fields has been very limited. We believe the PIRT is the only method presently available to
account for the needs of the intended application, the believed present capability of a code, and
areas where the code is weak. When these factors are combined, with prioritization of multiple
intended applications, one is able to identify and prioritize the necessary V&V activities. In our use
of the PIRT in the ASCI program at Sandia National Laboratories we have learned some important
lessons that can inform future practice in V&V. The first lesson learned is that when the intended
applications of a code are being identified and prioritized, the process requires close interaction
between the computational analysts and the �customers� of the computational analyses. The
customers may be design engineers, safety engineers, reliability engineers, and project engineers
who would all typically serve as decision makers about engineering-related issues. Without such
interaction, computational analysts can lose touch with the perspectives and priorities of their
analysis customers. The second lesson learned is that the PIRT can uncover requirements for
computational simulations that had not been recognized as important or that had not been
recognized at all. For example, the PIRT can be particularly helpful in identifying important
unrecognized areas of coupled physics, either on one face of the validation pyramid or coupling
between different faces of the pyramid (see Fig. 11).

We also learned that the PIRT can be helpful in identifying a spectrum of different types of
experiments and tests that are likely to be needed in the future. The following types of experiments
and tests have been identified:[185]
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� Phenomena-exploration experiments
� Mathematical-model-development experiments
� Calibration (model-updating) experiments
� Validation experiments
� System and certification tests

The key difference between this spectrum and the hierarchical validation experiments discussed
earlier is the goal of each: validation experiments focus on the assessment of modeling capability,
regardless of the level of physical complexity.

This spectrum of experiments influences the development and growth of confidence in
computational models and their applications in an evolutionary sense, as depicted in Fig. 13. In
this figure a serial view of the role of the above experiments is emphasized, as well as the
interaction of experiments and the code. In the left column we cast our view of experimental
activities in an ordered sequence consisting of the four types of experiments: phenomena
exploration, mathematical model development, calibration, and validation. In reality, of course,
there are possibly local loops that have not been emphasized in Fig. 13 that further connect each of
these experimental elements. For example, it is apparent that the conduct of experiments that are
designed to be validation experiments could reveal the need to perform experiments from any other
element in the column.

Computational
Domain

System Tests &
Certification Tests

Phenomena Identification
and Understanding

Experimental
Domain

Model Construction

Model Tuning

Credibility
Assessment

System
Qualification

Validation

Calibration

Math Model
Development

Phenomena
Exploration

Physical
Understanding

Exploration of
Range of Model

Applicability

Model
Updating

Prediction of
Validation

Experiments

Intended
Application

Figure 13
Interaction of Various Experimental and Computational Activities

(adapted from Ref. [185])
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Each element in the experimental domain directly interacts with an element in the
computational domain. The motivating concepts generating these computational elements are
suggested by the arrows in the middle of the figure that depict the flow of experimental information
directly to the computational domain and vice versa. We have simplistically characterized the
computational domain through the types of activities expected to be most associated with the
directly correlated experimental element. We believe that our depiction in Fig. 13 highlights the
right connections between the experimental and computational domains if the experimental domain
is not restricted only to validation experiments as they are defined in this report. In particular, the
ultimate goal of both experimental and computational activities is to provide a basis of confidence
and decision making for the intended application of the code. We have highlighted the great weight
that system tests and certification tests evoke by emphasizing a more unidirectional flow of
information between the experimental and computational domains at this level. The technical
weakness to their genuine physical reality, if the system can be tested, is that the test is only one
physical realization of a complex, nondeterministic system.

3.2 Verification activities

This section identifies areas of improvement that can help advance the effectiveness of the
verification process in computational physics. We recommend the development of standardized test
problems, the further development of the Method of Manufactured Solutions, and the use of
statistical methods for the quantification of SQA. The issue of verification in chaotic systems is
also briefly addressed.

Previously we have argued for the special importance that highly accurate solutions play in
numerical algorithm verification. For brevity, we will simply refer to highly accurate solutions as
�benchmarks.� These benchmarks can be analytical or numerical solutions. There are two senses in
which we mean benchmarks for use in algorithm testing. Weak-sense benchmarks are test
problems that are in common ad hoc use by various algorithm developers or code projects for the
purpose of assessing numerical accuracy. We define strong-sense benchmarks fundamentally to be
engineering standards. We will discuss strong-sense benchmarks in Section 4.4.

We believe using benchmarks constructed by the Method of Manufactured Solutions (MMS)
are the most effective technique for numerical algorithm verification. Although many code
developers question the effectiveness of MMS, we have found that everyone who has used the
technique is now a strong believer in its power. Users of the method have demonstrated that it is
extraordinarily sensitive to coding errors of the numerical algorithms: as Roache puts it
�annoyingly so.� In fluid dynamics, MMS benchmarks should be developed, for example, in
supersonic flows with shock waves, turbulent flows, reacting flows, multiphase flows, non-
Newtonian flows, free-surface flows, and large-eddy-simulation models. We recommend that
MMS benchmarks be developed and applied to other areas of physics, for example, radiation
transport, large plastic deformation, fracture dynamics, electromagnetics, and quantum mechanics.
Two additional topics of MMS that require further research, for all areas of physics, are (1) correct
imposition of boundary conditions for a mixture of elliptic, parabolic, and hyperbolic systems and
(2) determination of types of code errors that are not detectable by individual applications of the
MMS. Stated differently, the limits of the MMS should be investigated more thoroughly so that
any redundancy with traditional analytical-solution verification testing could be better understood.

Statistical testing methods for the quantification of SQA are becoming more widely used. We
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recommend that these methods should be developed more thoroughly, primarily by research teams
composed of computer scientists and statisticians. We believe that statistical testing methods can be
effectively used in the computational engineering and physics community, however, we are not
aware of any studies to date. The recent text by Singpurwalla and Wilson[178] is an excellent
introduction to the topic of statistical testing and detailed methods for statistical quantification. To
contrast the view of statistical testing of software with the view expressed in the present paper, we
note that the book by Singpurwalla and Wilson does note use the term �verification� in anywhere
the Table of Contents or in the Index.

The final research topic in verification activities that we discuss in this paper goes beyond the
topic of error estimation. We can ask fundamental questions of how well the computational world
matches the �true� dynamics of the underlying equations. For example, how well are the dynamical
system features of the underlying differential equations matched by the computational dynamics? In
the case of steady flows, this question is concerned with the stability and bifurcation behavior of
the computed solutions. Attempting to measure the computational �error� in this case is very
difficult. For example, it is only in relatively simple cases that the �true� stability and bifurcation
behavior may be well understood for the conceptual model. An entire taxonomy of potential threats
to computational accuracy arises in this point of view. Potential dangers are summarized in Ref.
[194] and the work cited there.

3.3 Validation activities

In this section we identify areas of improvement that can help advance the effectiveness of the
validation process in computational physics. We recommend the construction and use of a
validation hierarchy and the specification and use of quantitative assessment criteria for validation
metrics at the different tiers of the hierarchy. Several suggestions are also made regarding the need
for developing additional validation metrics based on statistical measures, as well as those that are
applicable to a wider range of physical processes.

The construction and use of a validation hierarchy for complex engineering systems is
relatively new, but we believe this approach will be fundamentally useful in the future. In fact, we
believe it is the only constructive approach for decomposing complex systems that can build
demonstrable confidence in individual computational models. Consequently, we recommend that
organizations that use computational modeling in the design, certification, or production of
engineered systems should begin constructing and using the validation hierarchical structure.
Admittedly, effective validation hierarchies�those that emphasize single-physics phenomena at the
lower levels and engineered system-performance priorities at the higher levels�are difficult to
construct. These hierarchies can only be constructed in an iterative fashion with input from a wide
range of professionals�from engineering analysts to design engineers to product marketing staff.
In our limited use of the approach, we have found that a validation hierarchy quickly points out
areas where little or no validation evidence exists. The ability of this approach to elucidate
insufficiency or weakness in the validation evidence may not be appealing to some advocates of
computational simulation, but knowledge of such deficiencies is essential from an engineering
perspective.

Validation experiments conducted at the higher tiers of the hierarchy (subsystem and system)
will invariably have poorly characterized experimental data for input to the computational
simulation. As a result, validation will necessitate probabilistic treatment of uncertain parameters in
the computational physics submodels or in the initial conditions or boundary conditions for the
PDEs. Propagation of these parameters or conditions through the computational physics model will
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likely rely on probabilistic sampling methods like Monte Carlo or Latin Hypercube sampling.
Importantly, major increases in computational resources will be required for the tens or hundreds
of solutions needed for the sampling techniques. Additionally, improved training and
understanding for probabilistic sampling techniques will be required for the computational physics
analysts involved in statistical validation activities. On this topic, we believe that the computational
physics community can learn a great deal from the probabilistic structural dynamics community and
the probabilistic risk assessment community and can use computational tools developed by these
communities.

We believe the validation team must be able to assess the results of the validation metrics.
This activity is referred to as �Metrics Assessment� (block 6) in Fig. 6 presented previously. The
primary goal of such an assessment is to credibly establish whether the agreement of calculations
with experimental data satisfies the application requirements. This is the key purpose of dedicated
validation experiments, and it is what distinguishes validation from a straightforward
computational simulation of an experiment. Failure to assess the validation metrics with respect to
the intended application makes it virtually impossible to understand what information about model
confidence has been generated as a result of the validation activity. In conventional practice,
assessment criteria for validation metrics are typically formulated, if at all, after the experimental
data have been collected. We believe it is very useful to define some of these assessment criteria,
assuming this can be done, during the �Intended Application� activity and the �Planning� activity
(see Fig. 6). More detailed specification of the assessment criteria will be possible after the
validation experiments are complete, but it will still be difficult.

Specifying the assessment criteria for validation metrics will be difficult for two reasons.
First, application requirements for the accuracy of computational analyses are commonly very
vague. When application requirements are given, they are typically given for relatively high-level
measures of system response. For example, a system-level requirement for debris containment
during the catastrophic failure of a gas turbine engine may simply be that all engine-part debris
must be contained within the engine shroud. Second, if the application requirement gives little or
no guidance for detailed system-response measures, how should these assessment criteria be
determined? For example, in the case of debris containment described above, how should the
application requirement be determined for models for metal tearing or large plastic-deformation
metal folding?

Two approaches are recommended for guidance in determining the assessment criteria at the
different tiers that are shown in Fig. 10 presented previously. First, the metrics assessment activity
(identified in Fig. 6) is not intended to completely answer the question of whether the code is
suitable for the intended application. Clearly, the intended application should dominate the criteria
for assessing the results of validation metrics. The fact remains that the quality of comparisons of
computational and experimental results can also be judged somewhat independently of their
ultimate application, purely as a problem in a scientific area. People who historically engage in
computational modeling of experiments make these judgments as a matter of course, but rarely are
these judgments quantified or formalized to the degree being advocated for validation purposes in
this paper. Second, guidance for assessment criteria for validation experiments done at the unit-
problem tier and the benchmark tier should also be derived from sensitivity and uncertainty
analyses done at both the subsystem tier and the system tier. Stated differently, the impact on the
system tier of given levels of accuracy at the lower tiers should be determined with sensitivity and
uncertainty analyses. Although these analyses are hard to accomplish early in the development of a
code, they will need to be done during the intended application activity and the planning activity.

While the questions and concerns listed above for specifying the assessment criteria are
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significant, it is our view that the quantification of requirements at multiple tiers is the correct
approach. When this approach is compared to the traditional test-based engineering approach, it is
seen that the approaches are actually analogous. The test-based engineering approach, however, is
more ad hoc at the lower tiers, and there is much more emphasis on testing of the full-scale
system.

Making validation-metric success criteria as quantitative as possible is important. It is
possible that success criteria may be qualitatively or indirectly defined, perhaps through a process
of assimilated experience during the course of the validation activity. In our opinion, however,
qualitative criteria, or criteria that are developed after the activity of comparing computational and
experimental results has begun, make the validation job more difficult and undermine the credibility
of the assessment. In addition, qualitative criteria that are developed after the execution of
experimental validation activities lead to the danger of focusing the definition of success on
discovering any feature in the comparison that is �good� at the expense of answering the harder
question: Is there an important reason that this feature in the computational-experimental
comparison should be good?

Attaching quantitative success criteria to the definitions of validation metrics eliminates
ambiguity from the meaning of computational-experimental comparisons. The net effect of this
statement is that a validation metric could also be viewed as a pair of concepts�one being the
definition of the metric, the other being a definition of what it means for the resulting comparison
to be �good� or �successful.� Defining the metric and its associated success criteria may be quite
difficult in various circumstances, but this goal is very desirable, nonetheless, and should be
attempted in all validation activities.

Additional research is needed to define validation metrics for a wide range of system-
response measures. For example, in fluid and solid dynamics we note that validation metrics are
needed that weight important regions of the domain more heavily than less important regions.
Metrics are also needed for unsteady continuum mechanics. If the computational solutions are
periodic or quasi-periodic, we believe that validation metrics should be formulated in the frequency
domain, not in the time domain. As is well known from structural dynamics, the frequency domain
eliminates the unimportant feature of phase shifts in the periodic response and concentrates on
natural modes in the system. For example, Urbina and Paez[187] have focused development of
validation metrics for structural dynamics models using frequency domain metrics, in particular a
windowed spectral response function metric. Apparently random, possibly chaotic, temporal
acceleration histories at various locations in complex structural systems result from close, but not
solid contact, between structural elements. We observe that the application of frequency-domain
validation metrics in complex fluid flows has some relationship to certain techniques that have been
developed for assessing prediction uncertainty in climate modeling using singular-value
decompositions.[149] For other kinds of flows, of course, elaboration of complicated time-domain
metrics may still be important. For example in an oil reservoir flow problem, Glimm et al.[71]
devise a complex time-domain metric that is used to predict confidence intervals for simulation
predictions of reservoir production given a stochastic geology.

Another research problem that needs vigorous attention is to formalize the propagation of
validation metric information from the unit problem/benchmark tiers in the validation hierarchy to
the subsystem/system tiers. We mentioned above that this problem is related to sensitivity analysis
and propagation of uncertainty in the validation hierarchy. What makes the problem even harder is
that second order uncertainty is present in the validation hierarchy. That is, quantitative
specification of information-flow within the hierarchy is itself highly uncertain, at least for
strongly-coupled-physics problems. While it may be the case that non-traditional uncertainty
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quantification methods are required to address this problem, researching and applying probabilistic
methodologies is certainly important to begin with. Recently, Hills el al.[89] have begun a study of
the propagation of validation metrics and their associated uncertainty within a simple validation
hierarchy using first-order-sensitivity methods and a maximum likelihood based validation metric.
The problem of propagation of validation metric information in a validation hierarchy also has
substantial formal similarity to the problem of system reliability methods. Recent work applying
Bayes net methods originally developed for system reliability methods to understanding system
validation metrics has just begun.[125]

Finally, we believe that improvements in validation metrics can be gained by adoption of
some of the methods used in model calibration. Validation puts a premium on obtaining a measure
to compare computational and experimental results, and relating the magnitude of this measure to
the intended application. Calibration emphasizes methods to improve the agreement between the
model and the experiment by optimization of model parameters. It is clear that metrics used in the
first step of calibration, i.e., before optimization is introduced, are directly pertinent to validation
metrics discussed here. After a model is calibrated or updated, the same question remains - "How
do we quantify the confidence in our calibrated model?" A recent review of some of these issues
with a focus on calibration and Bayesian updating is found in Ref. [25]. Bayesian model updating
requires a probabilistic validation metric for improvement of probabilistic parameters in the model.
Hasselman et al,[79,80] has developed a different approach to compute probabilistic validation
metrics for structural dynamics analyses. He uses principal components analysis and singular-
value decomposition in the formation of the metric.

4. Major Implementation Issues

Many of the research issues just discussed will require mathematical methods development
and careful thought and debate over a number of years to resolve. We believe there are also a
number of implementation issues that are just as important for progress of V&V, but they are
issues related to management and implementation. In this section we discuss: requirements for
improved understanding of differing perspectives, new management initiatives, new �customer�
initiatives for using commercial software, and the development of engineering standards for code
verification. Without attention, several of these implementation issues may actually be more
detrimental to the maturation of trust and confidence in computational simulation than the lack of
research progress.

4.1 Management issues

In this section we address implementation issues related to the need for significantly
improved code verification, the need for improved cooperation between computational analysts and
systems engineers, the need for synergism between analysts and experimentalists, and the need for
more quantitative V&V indicators. All of these issues present difficult management challenges to
transform the status quo. We note that the issues discussed in this section predominantly relate to
organizations that develop their own computational physics software or organizations that use
commercial software in their activities.

The growing impact associated with computational physics software failure, the increased
size and cost of code projects, and the need for interaction of large numbers of software developers
greatly leverage the involvement of, and reliance upon, formal SQA practices in the development of
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computational physics software. Resistance to the application of formal SQA practices in
computational physics is created by the degree of formality, constraints, and seeming costs of
SQA, as well as by psychological reasons (science versus product development, for example). As
mentioned by Roache,[161] SQA issues are downright unattractive to small computational physics
projects whose primary purpose is to develop software for exploration and scientific insight, rather
than to minimize the risk of software failure at seemingly great cost.

Significantly, as the goals and expectations of computational physics evolve to have impact
that goes far beyond scientific exploration and insight, the consequence of software failure greatly
magnifies. In particular, inaccurate answers rather than obvious code failures are especially
dreaded in high-consequence computing because it may be very difficult to determine that a
calculation is inaccurate. SQA methodologies provide some additional means of addressing such a
problem. But does the cost justify intensive application of such methodologies for a given
computational-physics-code project? Part of the confidence-optimization problem for verification is
the difficult question of how to measure the consequence of failure in a computational physics
code. Consequence measures could involve, for example, potential loss of future business,
possible liability costs (both human costs and property costs), magnitude of environmental
damage, and national security impact. Such a measure is important in clearly understanding when
the application of formal SQA methodologies provides unquestioned value in code verification
activities.

Two deeply held and widespread difficulties are encountered when applying computational
physics predictions to real systems-engineering decision making. The first difficulty concerns the
radically different time scales for making engineering decisions and producing results from
computational simulations; that is, engineering decisions need to be made rather quickly on design
issues, and there is not much time to run many computational simulations. For example, it is not
uncommon for the design engineer to tell the analyst �If you get the analysis to me by next week, I
will use the results to make a design decision. If you don�t, I will make the decision without your
help.� The second difficulty is related to the radically different value systems that are in play
between analysts and systems engineers. In our opinion, computational analysts typically have an
infatuation with physical detail, while systems engineers are concerned with high-level issues such
as design optimization, manufacturing produceability, system robustness, and assessment of
system safety and reliability. We believe that systems engineers are the ultimate customers of the
code and should be the dominant player in their interaction with computational analysts. Systems
engineers are responsible for designing and producing products, and the primary role of the codes
is to help them make better decisions.

As we have discussed previously, a competitive or adversarial relationship between
computationalists and experimentalists exists in many organizations. This type of relationship can
be found at the individual level or between computational and experimental groups. It could be due
to competition over organizational resources or could be the result of recognition of one group over
the other. Management often doesn�t recognize the problem, or if they do, tend to subconsciously
ignore it. And even if there are not competitive or adversarial pressures, there is commonly a
strong difference in cultures between computationalists and experimentalists. For V&V to be
successful, it is imperative that management assess the state of the relationship between
computationalists and experimentalists in their organizations and create opportunities for bringing
these different individuals and groups together in cooperative and mutually beneficial efforts.
Management must make it clear that the success of the validation effort will benefit both groups
equally, and that failure will be the responsibility of both groups.

The issue of how to succinctly communicate quantitative information concerning the status of
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V&V activities on a code or computational result is an important issue. There is a practical need for
quickly transmitting this information, for example, to potential customers for commercial software,
customers of computational analyses, decision makers, and policy makers. This is particularly
important when this information must be transmitted at a meeting or seminar-type presentation.
Logan and Nitta[124] have suggested an intuitive and effective method for transmitting this
information using graphical symbols of a dial-face meter for code verification, model validation,
and even numerical error estimation. They have suggested using a zero to ten scale on each V&V
meter to quantitatively indicate the level of completion, maturity, or accuracy of the activity. The
mapping of the numerical scale to various levels of completion, by necessity, must be qualitative.
However, the same qualitative mapping would be used for each computational result in an
ensemble of results, or computational capability exercised in the code. In that way the observer
could consistently see the relative maturity of different computations or capabilities. Achieving
consistency, even on a relative and qualitative scale, is a significant implementation goal for V&V.
It would be expected that there could be significant differences of opinion on the mapping between
numerical and qualitative descriptors between, say, commercial software competitors. However,
we believe Logan and Nitta�s VER- and VAL-meters are an effective way to move V&V
information toward a more quantitative basis and conspicuous stance when brevity is of the
essence.

4.2 Practical applications in industrial settings

A critical issue in improving the implementation of V&V activities, especially validation, is to
understand the particular needs of the customers of the computational models. From the
perspective of a code developer, these customers may be analysts who use the models to produce
results or they may be system engineers who use the results for decision making. Understandably,
an analyst could also be a system engineer. In this section we point out some of the practical
concerns that are important to customers in industry and discuss how several of these concerns are
dealt with in the process of attempting to validate and calibrate the results of the codes.

As the use of codes, particularly commercial codes, in industry becomes more widespread,
industrial customers are requiring that these codes be more responsive to their needs and
demonstrate more reliability. The primary concern of the industrial code user is the level of
confidence he has in the daily production use of the code, particularly in situations where the
validation domain is poorly known (see Fig. 9). The accuracy and reliability demands of industrial
customers vary greatly, however, based primarily on the level of physical detail in which the
customers are interested. This spectrum of physical complexity can range, for example, from
output quantities restricted to a limited number of global response measures, such as engine or
compressor efficiency, drag and lift coefficients, global forces and moments, up to detailed
physical characteristics, such as local temperature or plastic strain in selected regions, or to
gradients of properties such as local heat flux or fluid dynamic turbulence quantities. Given this
spectrum of possible physical complexity, the validation requirements of industrial customers will
vary greatly.

An illustration of how the validation requirements for industrial customers can vary is taken
from the ASME benchmark exercise of the transonic compressor rotor R37 from NASA.[45] This
exercise was handled as a blind validation computation by a large number of codes. When the
results were compiled at the conclusion of the exercise, the scatter of results on global compressor
efficiency was on the order of ±2%. This small level of scatter was welcomed in the CFD
community, but the important observation from the exercise was that different computations
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showing the same level of accuracy for computed efficiency were due to very different
combinations of errors in numerics and physical modeling. Since the global compressor efficiency
is obtained by a ratio involving average stagnation pressure and temperature, the same value of
efficiency can be obtained by under predicting both pressure and temperature or by exactly the
opposite�over predicting both quantities. In essence, different numerators and different
denominators can produce the same acceptable global efficiency result. This kind of example raises
serious and difficult questions for code developers regarding the importance of understanding and
responding to a wide range of customer requirements. To some customers, the accuracy of the
ratio would be sufficient. To other customers, the accuracy requirements would dictate that both
numerator and denominator be correct, not just the ratio of the two quantities. We believe it is just
as important to understand why a comparison between computation and experiment is good or
bad, as it is to obtain good agreement between computation and experiment.

All predictions will inevitably include a wide range of uncertainties, given the complexity of
the systems being modeled. Industrial customers must find ways to cope with these uncertainties,
as opposed to the initial expectation of accurately quantifying them. Generally, industrial customers
tend to use computational models in more pragmatic ways than do code developers and
researchers.[95] The rigorous application of computational models by code developers and
researchers is often a luxury not available to industrial customers, who are constrained by the time
and costs of industry design procedures. These constraints have consequences on the level of
requirements that industry can put on a simulation. For example, industrial simulations tend to limit
grid density, grid quality, and iterative convergence bounds; and sometimes the industrial
simulations do not estimate the modeling uncertainty by comparing the results from different
physical models. Consequently, the goals of numerical error estimation and the validation
recommendations discussed previously are clearly out of reach in many industrial environments.
Instead, the dialog between code developers and their customers focuses on the critical issue of
managing the uncertainties. This is a new concept in computational simulation, but it is analogous
to risk management in engineering design projects. This concept requires significant research to
define rational methodologies, quantitative evaluations, and techniques for integrating the
management of uncertainties in the decision-making process.

One way industry is attempting to deal with the severe constraints of cost and schedule
affecting numerical error estimation and model uncertainty estimation is to concentrate on the
�deltas� from computations. That is, the analyst considers only the changes of output quantities
from run to run that are due to, for example, changes in geometry or boundary conditions. The
basic assumption in this approach is that, for a given level of combined errors, the balance of
errors will not vary significantly when relatively small changes in geometrical or input parameters
are performed during a design-cycle process. This assumption is reasonable and pragmatic, but
there is no assurance that the deltas will be accurate.

To improve the reliability of this approach, industrial customers calibrate their computational
results with experimental data that are available for their existing hardware products. For example,
industrial customers typically have large quantities of proprietary experimental data for different
response measures of their products. As part of their calibration procedure, industrial customers
will choose the option for the mathematical model in the code that best reproduces a wide range of
their experimental data. When this calibration procedure is used, one of the important requirements
is that there be �no change� in computational results between old and new versions of the code for
the same set of geometrical conditions, boundary conditions, grids, and physical models chosen.
This no-change requirement allows an industrial code user to keep the same calibration of
parameters for the way in which the code was used. This calibration procedure in no way should
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be viewed as validation. It is a method of ensuring that all of the possible numerical error sources
and all of the physical model uncertainties consistently sum to zero for a given set of response
measures. The issue of summation and cancellation of errors and uncertainties was addressed in
Ref. [143].

A recent benchmark exercise organized by AIAA and NASA to validate lift and drag
predictions of a wing-body combination illustrates the concerns of industrial customers for
absolute predictive capability in a most striking way.[88,121] This exercise, conducted as a
workshop, was set up to assess the level of confidence of CFD codes for force and moment
predictions for the DLR-F4 wing-body data set. Thirty-five different CFD calculations were
presented using various grids, both structured and unstructured, including some grids
recommended to minimize grid dependency on some of the test cases. Although most of the codes
were among the most advanced research codes available, providing better results than did some of
the commercial codes, the outcome clearly showed the current limitations of CFD. Statistical
analysis indicated that the standard deviation of the CFD results, even after exclusion of the
computational �outliers," was still 21 drag counts. (Note that 1 drag count is equal to a drag
coefficient of 0.0001.) In comparison, wind tunnel experimental data is believed to be accurate to 4
drag counts. The industry objective, however, is 1 drag count: on the order of 0.5% of the total
drag of a modern transport aircraft. Citing from Ref. [121]:

More experience needs to be gained where CFD is used in conjunction with wind
tunnel data on development projects that culminate in a flight vehicle. Then the
methods can be �calibrated� to a known outcome. Note that experimental methods
went through a similar process long ago. Wind tunnel testing is not regarded as
�perfect�, but it is useful as an engineering tool because its advantages and
limitations are well known. CFD needs to go through the same process.

4.3 Commercial software

This section addresses implementation issues in V&V that are relevant to commercial
software companies, the commercial software packages they produce, and the customers with
whom these companies interact.

Commercial software companies are subjected to severe quality and reliability requirements
from their customers. In addition, many of the recommended activities discussed in this paper, for
example, which focused attention on modeling and simulation requirements, cannot be practically
carried out by the commercial code company because of the extremely wide range of applications
required by its customers. In light of such demands, the following factors are important for these
companies to consider as part of their business activities:

1) Both the software company and the customer must understand that it is impossible to cover
all possible combinations of physical, boundary, and geometrical conditions during the
V&V process. As pointed out repeatedly in this paper, a code cannot be validated for all
possible options available in the code. Hence, both parties, software company and
customer, must learn to cope with management of the uncertainties.

2) The software company must put in place and practice a high level of SQA for every stage of
the software life cycle. These stages range from a new software module to intermediate
releases, to simple bug-fixing patches. Each of these types of code releases will require
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separate SQA procedures for its quality assessment.

3) A commercial software system is much more than a numerical solver of the physical
models. The system also contains the global communication and interaction system
between the user, the various modules of the software system, and the computer as
accessed through the graphical user interface (GUI). The GUI must act in the following
ways: (a) as the task manager, allowing the user to direct computer runs to different
computer systems on the network and/or launching a series of runs with varying
parameters; (b) as a preprocessing unit for input geometries provided by computer-aided
design (CAD) software; (c) as an interface for grid generation tools; (d) as input data to
establish all of the needed boundary conditions and initial conditions; and (e) as the
mechanism to transfer data to the postprocessing software.

4) The complete software system has to be compiled and ported to a wide variety of computer
platforms (both serial and parallel processor machines), which run under different
operating systems, and must be verified for a range of compiler options.

The V&V procedures within a software company environment constitute an ongoing process.
With every software release, the company must have automatic SQA test procedures that are set up
under the supervision of a software quality group. These procedures must include automatic
reporting features for the results of the testing. In particular, the activities related to fixing,
tracking, and managing software bugs are a critical part of the global SQA procedures.

Commercial software companies have long recognized the importance of documentation for
their products. This documentation has mainly described the use of the GUI, the capabilities of the
code, grid generation capabilities, numerical algorithm techniques, and postprocessing capabilities.
However, it is our view that V&V activities have been poorly documented, if at all. This claim, of
course, is also valid for most software development projects in computational physics. It is
necessary to document the content and results of all major V&V activities, even though this practice
could present a risk to the software company in relation to its competitors. The old adage of quality
engineering applies here as well: If it isn�t documented, it didn�t happen.

Documentation can be in traditional paper form, or in the form of a computer-based records
management system. It is our belief that a computer-based system will provide the best vehicle for
two reasons. First, a computer-based system can more easily be updated and accessed, and it can
include much more detail. For example, documentation can be provided on how the code was used
in the definition, design, and analysis of each validation experiment. Enough information should
be included to allow reproduction of the described calculations by others. Additionally, a complete
description of each experiment should be given, and all of the experimental data should be easily
available for visual and quantitative presentation. Second, a properly designed computer-based
system can easily be searched from a wide variety of perspectives, e.g., computational,
experimental, and engineering project, and can point, or link, to other documented information
associated with the V&V activities that intersects a wide range of perspectives. Internet access
greatly facilitates these desirable search and link capabilities, both within an organization�s
computer network and between organizations that are widely spread geographically but that work
together as part of a project team.

One important way that software companies can improve the reliability of their codes is to
provide sufficient training and education for their customers. For new users of a commercial code,
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the training should focus on basic operation of the code and use of the GUI interface. For more
experienced users, the training should focus on techniques for sophisticated grid generation, on
understanding the limitations of models in the code, and on approaches for dealing with the wide
range of uncertainties in real engineering systems. It is our view that large organizations that
develop their own codes for internal use sometimes neglect to adequately address user support
issues such as training, bug fixing, and consulting on the use of their codes.

4.4 Development of Standards

The maturation of V&V depends on concerted efforts by individuals and groups throughout
the world to develop standardized terminology, procedures and tools that can be used by the
computational physics community. In this section we call for a further commitment to such efforts,
recommend the need to clarify the present terminology on validation, address the contributions that
standards organizations can make and are making in this process, and underscore the critical need
for benchmark databases for both verification and validation. Current European efforts to construct
validation databases are highlighted.

Concerning terminology, we have used the DoD/AIAA definition of validation to mean that
validation does not include the concept of adequacy of the computational result for the intended
uses of the model. We argue that this is what the words mean in the definition of validation given
in Section 1.2. As we noted however, our interpretation is narrower than the interpretation that is
widely accepted in the DoD community. The DoD community considers validation to be the
process of determining the degree to which the model is adequate for the application of interest. We
argue that there are two significant reasons not to use the meaning ascribed by the DoD
community. First, if the DoD definition was used, then individual researchers or analysts who are
comparing computational and experimental results cannot claim they are validating a model. The
only individuals, or group of individuals, that can do this are those who understand the intended
application for the modeling and simulation capability and can state that the level of agreement
between computation and experiment is adequate for the intended application. Second, the
adequacy requirements for the intended application are typically ill defined. Adequacy requirements
are ill defined for practical reasons; for example, adequacy may be defined fairly well at the
complete system tier but very poorly for lower tiers of the validation hierarchy. Also, adequacy
requirements are ill defined for technical reasons; for example, the analysis of complex systems
involves the interaction of many different types of computational models, each with its own
adequacy. The computational adequacy for some high-level system response measure is actually a
combination of many adequacy measures from each of the contributing models. As a result, one
must deal with adequacy requirements at a system level in an iterative and coupled manner by
propagating uncertainty through many different types of physics models and multiple tiers of
hierarchical complexity. Whether or not one accepts the arguments given here for our
interpretation, the issue of interpretation of the meaning of validation needs further discussion and
debate by the DoD community, the DOE community, engineering standards-writing committees,
and other stakeholders relying on modeling and simulation.

We believe there is an urgent need to develop industry-wide standards for V&V procedures
and tools that are applicable to the computational physics community. In our view, the most
appropriate organizations for defining these standards are professional engineering societies that
have officially recognized standards-writing committees. A complementary approach, one that is
appropriate at the worldwide level, is the involvement of the International Organization for
Standardization (ISO). We believe there is also an important contribution to be made by national
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standards organizations, such as the U.S. National Institute of Standards and Technology (NIST),
and by similar organizations in the Europe Union, such as the European Research Community on
Flow, Turbulence And Combustion (ERCOFTAC)[60] and the National Agency for Finite Element
Methods and Standards (NAFEMS).[131]

We believe standards organizations are best able to contribute in two areas of V&V:
codification of recommended procedures and tools. As discussed earlier in this paper, the AIAA
CFD Committee on Standards contributed the first standards document on V&V in 1998.[3] The
document provided a foundation on which to build, but it was primarily focused on background,
terminology, and fundamental concepts. New standards documents are needed that go beyond the
AIAA Guide in terms of detailed procedures and tools, and that address technical disciplines other
than fluid dynamics. For example, a new standards committee was formed in the American Society
of Mechanical Engineers (ASME): the Committee on Verification and Validation in Computational
Solid Mechanics (Performance Test Codes No. 60). In Europe, a particularly effective activity for
the development of V&V procedures has been conducted by ERCOFTAC. ERCOFTAC privately
funded an initiative on �Quality and Trust in Industrial CFD," which led to the publication of the
comprehensive report by Casey and Wintergerste.[27] This document, although not a standards
document, gives general as well as specific practical advice on modeling and numerical techniques
for CFD.

Concerning V&V tools, we contend that the key tools that need to be constructed are separate
benchmark databases for verification and validation. Verification databases should be composed of
all three types of highly accurate solutions, which we will simply refer to as benchmark solutions.
Strong-sense benchmarks are test problems that are precisely defined and formally documented,
typically by professional societies, academic institutions, or nonprofit organizations. It is our view
that a strong-sense benchmark is described by the following four factors:

1) An exact, standardized, frozen, and promulgated definition of the benchmark.

2) An exact, standardized, and promulgated statement of the purpose of the benchmark. This
statement addresses the benchmark�s role and application in a comprehensive test plan for a
code, for example.

3) Exact, standardized, frozen, and promulgated requirements for comparison of codes with
the benchmark�s results.

4) An exact, standardized, frozen, and promulgated definition of acceptance criteria for
comparison of codes with the benchmark�s results. The criteria can be phrased either in
terms of success or failure.

Do strong-sense benchmarks exist? We believe that the answer is �certainly not in
computational physics.� We believe that standards organizations are the most appropriate
organizations to compile and codify strong-sense benchmarks. We note that none of these groups
have dealt with the most sensitive issue in our definition of strong-sense benchmarks, namely, the
issue of establishing stringent standards for comparison with benchmarks and measuring success
or failure. It is very clear to us that establishing standards will be a long and difficult process. The
realities of competition among commercially available computational physics codes, competition
among companies that rely on computational physics codes, and competition among countries may
stifle this endeavor. However, we believe that the maturation of computational physics will suffer
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if strong-sense benchmarks are not developed.
Validation benchmark databases are also critically needed. In the near term, these databases

should be populated using existing high-quality experimental data that meet most, if not all, of the
requirements for validation experiments specified earlier in this paper. The construction of
experimental databases is in development both in the United States and in Europe. In the United
States, for example, the National Project for Applications-oriented Research in CFD (NPARC)
initiative has concentrated on validation of internal reacting flows. In Europe, the FLOWNET
project is constructing databases for a wide range of industrial applications in support of validation.
Closely related to FLOWNET is the QNET-CFD Thematic Network.[157] This network has more
than 40 participants from several countries who represent research establishments and many
sectors of the industry, including commercial CFD software companies. The QNET-CFD Thematic
Network is funded by the European Commission. The objective of the network is to establish a list
of so-called Application Challenges, or ACs, and Underlying Flow Regime Challenges. The
Application Challenges are specific applications that represent simulations at the subsystem tier
shown in Fig. 10. The Underlying Flow Regime Challenges represent simulations similar to the
benchmark tier shown in Fig. 10.

The QNET-CFD Thematic Network has completed its second year of activity, with the
participating organizations contributing 53 Application Challenges divided over six Thematic Areas
aligned with the following industrial sectors: External Aerodynamics (10 ACs); Combustion &
Heat Transfer (7 ACs); Chemical & Process, Thermal Hydraulics, & Nuclear Safety (11 ACs);
Civil Construction (6 ACs); Environment (7 ACs); and Turbomachinery Internal Flows (12 ACs).
The main requirement for each Application Challenge is that the experimental results become
available so that CFD validation can be conducted. Even though the QNET-CFD Thematic
Network is relatively new, it is our view that it is an exemplary initiative in the construction of
validation databases. We believe that industry, government, and academia in the United States
should promptly begin to formulate a similar activity.

In the long term, new validation experiments should be funded, and these results should then
be entered in the validation database. We believe that identification of the validation experiments
should be the responsibility of the application community. Of course, there would probably be little
agreement in the application community on the specific experiments to be conducted. Funding for
high-priority experiments could be obtained from research establishments, governmental
institutions, and even joint ventures between private industrial organizations. The organizational
role and facilitation of discussions regarding which experiments should be conducted would be
best served by standards organizations. The validation databases, constructed in both the near term
and the long term, could either be completely open to the public or accessible only to member
organizations.

5. Closing Remarks

Implementation of most of the approaches and procedures recommended here, for V&V
computations and experiments, will be neither inexpensive nor easy. Furthermore, some of these
approaches may even be technically or economically impractical in particular situations. In
addition, some of the approaches and procedures have not been developed satisfactorily for
implementation in an engineering environment. With each included step, however, the quality of
the code V&V processes will be improved. We firmly believe that V&V is a process, not a
product. We also believe that an effective path forward to improving the V&V processes is to
contrast processes that are ideal, possible, and ineffective. The following gives examples of these
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as they relate to various V&V activities, as viewed from the perspective of developing modeling
and simulation capability:

1. Ideal: The application domain for the modeling and simulation capability is well
understood and carefully defined, and the accuracy requirements are known.
Possible: Portions of the application domain are understood and some of the accuracy
requirements are known.
Ineffective: The modeling and simulation capability is expected to accurately compute
results for every advertised option in the code.

2. Ideal: The validation tier hierarchy, analogous to the validation pyramid discussed, has
been carefully constructed using a systems engineering approach.
Possible: The validation hierarchy has been constructed for individual subsystems or
components, but the interactions between subsystems have not been studied.
Ineffective: No validation hierarchy has been constructed and only expedient validation
experiments have been identified.

3. Ideal: The PIRT has been used to identify and rank the importance of physical processes
and interactions of processes for all tiers and faces of the validation pyramid.
Possible: The PIRT has been used to identify and rank processes on one face of the
validation pyramid.
Ineffective: No PIRT was constructed and only well exercised physical-process options
in the code are considered for V&V activities.

4. Ideal: Using the results of the PIRT, code verification activities have been defined and
prioritized, schedules set, and needed resources allocated.
Possible: Using the results of the PIRT, some of the code verification activities are
defined, but the code development resources or schedule dictate which activities will be
conducted.
Ineffective: No PIRT was constructed and code verification activities are hap-hazard and
only conducted if resources and time become available.

5. Ideal: SQA procedures have been defined, implemented, consistently adhered to, and
documented.
Possible: SQA procedures are poorly defined and partially implemented, only adhered to
just before a new code release, and informally documented.
Ineffective: SQA procedures have not been considered or implemented, and are only
mentioned if the code customer asks about them.

6. Ideal: Using the results of the PIRT, model validation activities, both computational and
experimental, have been defined and prioritized, schedules set, and needed resources
allocated.
Possible: The PIRT is used to define and prioritize some model validation activities, but
code-application schedules and limited resources require elimination of many validation
activities.
Ineffective: No PIRT was constructed and model validation will only be conducted using
existing experimental data.
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7. Ideal: The code is used to define, design, and analyze all of the validation experiments. 
Possible: The code is applied to define and design some of the validation experiments,
but many of the code results are only available after the validation experiment is completed.
Ineffective: The validation experiments are conducted completely separate from any input
from the code development team and code results.

8. Ideal: Highly converged numerical solutions, in both space and time, have been obtained
for every validation experiment conducted.
Possible: Quantitative numerical error estimates are computed for most validation
experiments, but some complex-system experiments only have qualitative error estimates.
Ineffective: No quantitative numerical error estimates are available and only single-grid,
single-time-step solutions are available.

9. Ideal: Validation-experiment data are well characterized, and a large number of
experimental realizations are available for estimating random and bias errors.
Possible: The experimental data are moderately characterized, and only two experimental
realizations are obtained.
Ineffective: Only one experimental realization is available and no estimates are available
for random or bias errors in needed computational quantities or in measured experimental
results.

10. Ideal: Validation metrics are carefully defined and requirements stated, and clearly
connected to modeling and simulation requirements for the application domain.
Possible: Validation metrics are only defined and requirements stated for high-level
system responses, and not defined or requirements stated for low-level (i.e., unit tier)
physical response.
Ineffective: Validation metrics are not defined and only qualitative assessment is to be
used for low-level physical responses.

11. Ideal: Using statistical data for both computational and experimental results for the
validation metrics, one is able to precisely quantify the accuracy of the model for all
validation experiments.
Possible: Statistical data are available from the experimental results but computational
results are limited to deterministic metrics because of highly-constrained budgets and
schedules.
Ineffective: Validation metrics are not defined and the �view-graph norm� is used for
assessment.

12. Ideal: Lessons learned from all of the validation activities are clearly formulated,
documented, and broadly communicated.
Possible: Lessons learned from some validation experiments are documented, but only
those where the validation experiment and the code accuracy was considered a success.
Ineffective: No time or resources are available for determining or documenting lessons
learned, and lessons that are learned, are verbally and randomly communicated.
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Some will argue that the costs of V&V activities can exceed their value added. In some
instances they might. However, we remind these skeptics that the costs of V&V must be weighed
against the costs of incorrect or improper decisions made based on computational modeling and
simulation. Analogous to probabilistic risk assessment activities, the risk is typically defined as the
product of the probability of the occurrence of the event and the consequence of the event. For
example, suppose an erroneous conclusion is made on the physics of some process described in an
article in a research journal. The erroneous result would rightly be viewed as a low consequence
risk. On the other hand, if erroneous conclusions based on modeling and simulation are made on
high-consequence events, decision makers could place their constituency at extreme risk. This is
exceedingly more true for systems that cannot be tested. For these situations, the only path forward
is to drastically improve our confidence and understanding in computational simulations.
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